From bfae09394075a89c9aaeaf5f2ad6407a05384c78 Mon Sep 17 00:00:00 2001 From: florent Date: Sat, 30 Apr 2011 23:57:16 +0000 Subject: manage image import from paint activity - first pixel color will be used as color to alpha filter --- diff --git a/atoidejouer/tools/storage.py b/atoidejouer/tools/storage.py index c8db5ac..0164053 100644 --- a/atoidejouer/tools/storage.py +++ b/atoidejouer/tools/storage.py @@ -1,12 +1,15 @@ # python import -import logging, os, shutil, tarfile, time +import dbus, logging, os, shutil, tarfile, time # .. from gettext import gettext as _ # gtk import import gtk +# png import from pypng +from lib import png + # sugar import from sugar.activity import activity from sugar.datastore import datastore @@ -20,6 +23,10 @@ ACTIVITY_NAMES = { } +def get_tmp_path(ext='png'): + return os.path.join(activity.get_activity_root(), 'tmp.%s' % ext) + + def get_config_path(): # get bundle path _bundle_path = activity.get_bundle_path() @@ -86,6 +93,64 @@ def get_pixbuf_from_data(data, image_type=None, size=None): return _loader.get_pixbuf() +def png_from_pixbuf(filename, activity_id, timestamp): + # prepare outpath + _out_path = get_image_path(filename) + if os.path.exists(_out_path): + return + else: + pass + # prepare inpath + _in_path = get_path_from_journal(activity_id, timestamp) + # init png reader + _reader = png.Reader(filename=_in_path) + # read the file + _w, _h, _pixels, _metadata = _reader.read() + # init working vars + _new_pixels = list() + _first_color = None + # update vars + for _i, _row in enumerate(_pixels): + # init new row + _new_row = list() + for _j, _col in enumerate(_row): + # upate rgb + if _j % 3 == 0: + _rgb = [_col] + continue + else: + _rgb.append(_col) + # update color first and after + if _j % 3 == 2: + # keep the first color + if _first_color is None: + _first_color = _rgb + else: + pass + # make it alpha if first + if _rgb == _first_color: + _new_row.extend([0, 0, 0, 0]) + else: + _rgb.append(255) + _new_row.extend(_rgb) + else: + continue + # add new row + _new_pixels.append(_new_row) + # update alpha meta + _metadata['alpha'] = True + _metadata['planes'] = 4 + # write the new image with alpha + _new_png = open(_out_path, 'wb') + _writer = png.Writer(_w, _h, **_metadata) + _writer.write(_new_png, _new_pixels) + _new_png.close() + # just in case + del _reader + del _pixels + del _new_pixels + + def get_journal_objects(activity_name): # prepare query _query = {'activity': ACTIVITY_NAMES[activity_name]} @@ -117,12 +182,6 @@ def list_info_from_journal(activity_name): # init title reg else: _titles[_t] = 1 - - # DEBUG - logger.debug('[utils] _info_from_jnl - activity_id: %s' % _m['activity_id']) - logger.debug('[utils] _info_from_jnl - timestamp: %s' % _m['timestamp']) - # DEBUG - # ensure info yield { 'activity_id' : _m['activity_id'], @@ -142,46 +201,21 @@ def list_files_from_journal(activity_name): yield _o.get_file_path() -def get_file_from_journal(activity_name, activity_id, timestamp): +def get_path_from_journal(activity_id, timestamp): # prepare query _query = { - 'activity': ACTIVITY_NAMES[activity_name], - 'activity_id': activity_id, - 'timestamp': timestamp, + 'activity_id': str(activity_id), + 'timestamp': int(timestamp) } # find in ds _results, _count = datastore.find(_query) + # .. if _count == 1: # get path - _path = _results[0].get_file_path() + return _results[0].get_file_path() else: return None - # ... - _temp = os.path.join('/home', 'florent', '%s.tmp' % activity_name) - - # DEBUG - logger.debug('[utils] _file_from_jnl - _temp: %s' % _temp) - # DEBUG - - # ... - os.link(_path, _temp) - - # DEBUG - logger.debug('[utils] _file_from_jnl - _path: %s' % _path) - # DEBUG - - _f = open(_temp) - - # DEBUG - logger.debug('[utils] _file_from_jnl - _len: %s' % len(_f.read())) - # DEBUG - - _f.close() - - # return it - return _results - def __check_dir(dir_name, parent='data'): # get activity path diff --git a/atoidejouer/ui/notebook.py b/atoidejouer/ui/notebook.py index 517de08..0b132c8 100644 --- a/atoidejouer/ui/notebook.py +++ b/atoidejouer/ui/notebook.py @@ -63,6 +63,21 @@ def _cb_cursor_changed(treeview, notebook, type_): notebook.screen.item_preview.set_item(filename=_filename) # update current notebook.current_item = _filename + # update current + elif type_ == 'journal': + # get value + _pixbuf = _model.get_value(_iter, 0) + _filename = _model.get_value(_iter, 1) + _metadata = _model.get_value(_iter, 2) + # .. + storage.png_from_pixbuf(_filename, _metadata['activity_id'], + _metadata['timestamp']) + # udpate preview + notebook.screen.item_preview.set_item(filename=_filename) + # update current + notebook.current_item = _filename + # .. + notebook._get_store_graphic() elif type_ == 'sequence': # clear sequence preview notebook.screen.sequence_preview.clear() diff --git a/lib/png.py b/lib/png.py new file mode 100755 index 0000000..5519407 --- /dev/null +++ b/lib/png.py @@ -0,0 +1,3785 @@ +#!/usr/bin/env python + +# $URL: http://pypng.googlecode.com/svn/trunk/code/png.py $ +# $Rev: 228 $ + +# png.py - PNG encoder/decoder in pure Python +# +# Copyright (C) 2006 Johann C. Rocholl +# Portions Copyright (C) 2009 David Jones +# And probably portions Copyright (C) 2006 Nicko van Someren +# +# Original concept by Johann C. Rocholl. +# +# LICENSE (The MIT License) +# +# Permission is hereby granted, free of charge, to any person +# obtaining a copy of this software and associated documentation files +# (the "Software"), to deal in the Software without restriction, +# including without limitation the rights to use, copy, modify, merge, +# publish, distribute, sublicense, and/or sell copies of the Software, +# and to permit persons to whom the Software is furnished to do so, +# subject to the following conditions: +# +# The above copyright notice and this permission notice shall be +# included in all copies or substantial portions of the Software. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS +# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN +# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. +# +# Changelog (recent first): +# 2009-03-11 David: interlaced bit depth < 8 (writing). +# 2009-03-10 David: interlaced bit depth < 8 (reading). +# 2009-03-04 David: Flat and Boxed pixel formats. +# 2009-02-26 David: Palette support (writing). +# 2009-02-23 David: Bit-depths < 8; better PNM support. +# 2006-06-17 Nicko: Reworked into a class, faster interlacing. +# 2006-06-17 Johann: Very simple prototype PNG decoder. +# 2006-06-17 Nicko: Test suite with various image generators. +# 2006-06-17 Nicko: Alpha-channel, grey-scale, 16-bit/plane support. +# 2006-06-15 Johann: Scanline iterator interface for large input files. +# 2006-06-09 Johann: Very simple prototype PNG encoder. + +# Incorporated into Bangai-O Development Tools by drj on 2009-02-11 from +# http://trac.browsershots.org/browser/trunk/pypng/lib/png.py?rev=2885 + +# Incorporated into pypng by drj on 2009-03-12 from +# //depot/prj/bangaio/master/code/png.py#67 + + +""" +Pure Python PNG Reader/Writer + +This Python module implements support for PNG images (see PNG +specification at http://www.w3.org/TR/2003/REC-PNG-20031110/ ). It reads +and writes PNG files with all allowable bit depths (1/2/4/8/16/24/32/48/64 +bits per pixel) and colour combinations: greyscale (1/2/4/8/16 bit); RGB, +RGBA, LA (greyscale with alpha) with 8/16 bits per channel; colour mapped +images (1/2/4/8 bit). Adam7 interlacing is supported for reading and +writing. A number of optional chunks can be specified (when writing) +and understood (when reading): ``tRNS``, ``bKGD``, ``gAMA``. + +For help, type ``import png; help(png)`` in your python interpreter. + +A good place to start is the :class:`Reader` and :class:`Writer` classes. + +Requires Python 2.3. Limited support is available for Python 2.2, but +not everything works. Best with Python 2.4 and higher. Installation is +trivial, but see the ``README.txt`` file (with the source distribution) +for details. + +This file can also be used as a command-line utility to convert +`Netpbm `_ PNM files to PNG, and the reverse conversion from PNG to +PNM. The interface is similar to that of the ``pnmtopng`` program from +Netpbm. Type ``python png.py --help`` at the shell prompt +for usage and a list of options. + +A note on spelling and terminology +---------------------------------- + +Generally British English spelling is used in the documentation. So +that's "greyscale" and "colour". This not only matches the author's +native language, it's also used by the PNG specification. + +The major colour models supported by PNG (and hence by PyPNG) are: +greyscale, RGB, greyscale--alpha, RGB--alpha. These are sometimes +referred to using the abbreviations: L, RGB, LA, RGBA. In this case +each letter abbreviates a single channel: *L* is for Luminance or Luma or +Lightness which is the channel used in greyscale images; *R*, *G*, *B* stand +for Red, Green, Blue, the components of a colour image; *A* stands for +Alpha, the opacity channel (used for transparency effects, but higher +values are more opaque, so it makes sense to call it opacity). + +A note on formats +----------------- + +When getting pixel data out of this module (reading) and presenting +data to this module (writing) there are a number of ways the data could +be represented as a Python value. Generally this module uses one of +three formats called "flat row flat pixel", "boxed row flat pixel", and +"boxed row boxed pixel". Basically the concern is whether each pixel +and each row comes in its own little tuple (box), or not. + +Consider an image that is 3 pixels wide by 2 pixels high, and each pixel +has RGB components: + +Boxed row flat pixel:: + + list([R,G,B, R,G,B, R,G,B], + [R,G,B, R,G,B, R,G,B]) + +Each row appears as its own list, but the pixels are flattened so that +three values for one pixel simply follow the three values for the previous +pixel. This is the most common format used, because it provides a good +compromise between space and convenience. PyPNG regards itself as +at liberty to replace any sequence type with any sufficiently compatible +other sequence type; in practice each row is an array (from the array +module), and the outer list is sometimes an iterator rather than an +explicit list (so that streaming is possible). + +Flat row flat pixel:: + + [R,G,B, R,G,B, R,G,B, + R,G,B, R,G,B, R,G,B] + +The entire image is one single giant sequence of colour values. +Generally an array will be used (to save space), not a list. + +Boxed row boxed pixel:: + + list([ (R,G,B), (R,G,B), (R,G,B) ], + [ (R,G,B), (R,G,B), (R,G,B) ]) + +Each row appears in its own list, but each pixel also appears in its own +tuple. A serious memory burn in Python. + +In all cases the top row comes first, and for each row the pixels are +ordered from left-to-right. Within a pixel the values appear in the +order, R-G-B-A (or L-A for greyscale--alpha). + +There is a fourth format, mentioned because it is used internally, +is close to what lies inside a PNG file itself, and has some support +from the public API. This format is called packed. When packed, +each row is a sequence of bytes (integers from 0 to 255), just as +it is before PNG scanline filtering is applied. When the bit depth +is 8 this is essentially the same as boxed row flat pixel; when the +bit depth is less than 8, several pixels are packed into each byte; +when the bit depth is 16 (the only value more than 8 that is supported +by the PNG image format) each pixel value is decomposed into 2 bytes +(and `packed` is a misnomer). This format is used by the +:meth:`Writer.write_packed` method. It isn't usually a convenient +format, but may be just right if the source data for the PNG image +comes from something that uses a similar format (for example, 1-bit +BMPs, or another PNG file). + +And now, my famous members +-------------------------- +""" + +# http://www.python.org/doc/2.2.3/whatsnew/node5.html +from __future__ import generators + +__version__ = "$URL: http://pypng.googlecode.com/svn/trunk/code/png.py $ $Rev: 228 $" + +from array import array +try: # See :pyver:old + import itertools +except: + pass +import math +# http://www.python.org/doc/2.4.4/lib/module-operator.html +import operator +import struct +import sys +import zlib +# http://www.python.org/doc/2.4.4/lib/module-warnings.html +import warnings + + +__all__ = ['Image', 'Reader', 'Writer', 'write_chunks', 'from_array'] + + +# The PNG signature. +# http://www.w3.org/TR/PNG/#5PNG-file-signature +_signature = struct.pack('8B', 137, 80, 78, 71, 13, 10, 26, 10) + +_adam7 = ((0, 0, 8, 8), + (4, 0, 8, 8), + (0, 4, 4, 8), + (2, 0, 4, 4), + (0, 2, 2, 4), + (1, 0, 2, 2), + (0, 1, 1, 2)) + +def group(s, n): + # See + # http://www.python.org/doc/2.6/library/functions.html#zip + return zip(*[iter(s)]*n) + +def isarray(x): + """Same as ``isinstance(x, array)`` except on Python 2.2, where it + always returns ``False``. This helps PyPNG work on Python 2.2. + """ + + try: + return isinstance(x, array) + except: + return False + +try: # see :pyver:old + array.tostring +except: + def tostring(row): + l = len(row) + return struct.pack('%dB' % l, *row) +else: + def tostring(row): + """Convert row of bytes to string. Expects `row` to be an + ``array``. + """ + return row.tostring() + +# Conditionally convert to bytes. Works on Python 2 and Python 3. +try: + bytes('', 'ascii') + def strtobytes(x): return bytes(x, 'iso8859-1') + def bytestostr(x): return str(x, 'iso8859-1') +except: + strtobytes = str + bytestostr = str + +def interleave_planes(ipixels, apixels, ipsize, apsize): + """ + Interleave (colour) planes, e.g. RGB + A = RGBA. + + Return an array of pixels consisting of the `ipsize` elements of data + from each pixel in `ipixels` followed by the `apsize` elements of data + from each pixel in `apixels`. Conventionally `ipixels` and + `apixels` are byte arrays so the sizes are bytes, but it actually + works with any arrays of the same type. The returned array is the + same type as the input arrays which should be the same type as each other. + """ + + itotal = len(ipixels) + atotal = len(apixels) + newtotal = itotal + atotal + newpsize = ipsize + apsize + # Set up the output buffer + # See http://www.python.org/doc/2.4.4/lib/module-array.html#l2h-1356 + out = array(ipixels.typecode) + # It's annoying that there is no cheap way to set the array size :-( + out.extend(ipixels) + out.extend(apixels) + # Interleave in the pixel data + for i in range(ipsize): + out[i:newtotal:newpsize] = ipixels[i:itotal:ipsize] + for i in range(apsize): + out[i+ipsize:newtotal:newpsize] = apixels[i:atotal:apsize] + return out + +def check_palette(palette): + """Check a palette argument (to the :class:`Writer` class) for validity. + Returns the palette as a list if okay; raises an exception otherwise. + """ + + # None is the default and is allowed. + if palette is None: + return None + + p = list(palette) + if not (0 < len(p) <= 256): + raise ValueError("a palette must have between 1 and 256 entries") + seen_triple = False + for i,t in enumerate(p): + if len(t) not in (3,4): + raise ValueError( + "palette entry %d: entries must be 3- or 4-tuples." % i) + if len(t) == 3: + seen_triple = True + if seen_triple and len(t) == 4: + raise ValueError( + "palette entry %d: all 4-tuples must precede all 3-tuples" % i) + for x in t: + if int(x) != x or not(0 <= x <= 255): + raise ValueError( + "palette entry %d: values must be integer: 0 <= x <= 255" % i) + return p + +class Error(Exception): + prefix = 'Error' + def __str__(self): + return self.prefix + ': ' + ' '.join(self.args) + +class FormatError(Error): + """Problem with input file format. In other words, PNG file does + not conform to the specification in some way and is invalid. + """ + + prefix = 'FormatError' + +class ChunkError(FormatError): + prefix = 'ChunkError' + + +class Writer: + """ + PNG encoder in pure Python. + """ + + def __init__(self, width=None, height=None, + size=None, + greyscale=False, + alpha=False, + bitdepth=8, + palette=None, + transparent=None, + background=None, + gamma=None, + compression=None, + interlace=False, + bytes_per_sample=None, # deprecated + planes=None, + colormap=None, + maxval=None, + chunk_limit=2**20): + """ + Create a PNG encoder object. + + Arguments: + + width, height + Image size in pixels, as two separate arguments. + size + Image size (w,h) in pixels, as single argument. + greyscale + Input data is greyscale, not RGB. + alpha + Input data has alpha channel (RGBA or LA). + bitdepth + Bit depth: from 1 to 16. + palette + Create a palette for a colour mapped image (colour type 3). + transparent + Specify a transparent colour (create a ``tRNS`` chunk). + background + Specify a default background colour (create a ``bKGD`` chunk). + gamma + Specify a gamma value (create a ``gAMA`` chunk). + compression + zlib compression level (1-9). + interlace + Create an interlaced image. + chunk_limit + Write multiple ``IDAT`` chunks to save memory. + + The image size (in pixels) can be specified either by using the + `width` and `height` arguments, or with the single `size` + argument. If `size` is used it should be a pair (*width*, + *height*). + + `greyscale` and `alpha` are booleans that specify whether + an image is greyscale (or colour), and whether it has an + alpha channel (or not). + + `bitdepth` specifies the bit depth of the source pixel values. + Each source pixel value must be an integer between 0 and + ``2**bitdepth-1``. For example, 8-bit images have values + between 0 and 255. PNG only stores images with bit depths of + 1,2,4,8, or 16. When `bitdepth` is not one of these values, + the next highest valid bit depth is selected, and an ``sBIT`` + (significant bits) chunk is generated that specifies the original + precision of the source image. In this case the supplied pixel + values will be rescaled to fit the range of the selected bit depth. + + The details of which bit depth / colour model combinations the + PNG file format supports directly, are somewhat arcane + (refer to the PNG specification for full details). Briefly: + "small" bit depths (1,2,4) are only allowed with greyscale and + colour mapped images; colour mapped images cannot have bit depth + 16. + + For colour mapped images (in other words, when the `palette` + argument is specified) the `bitdepth` argument must match one of + the valid PNG bit depths: 1, 2, 4, or 8. (It is valid to have a + PNG image with a palette and an ``sBIT`` chunk, but the meaning + is slightly different; it would be awkward to press the + `bitdepth` argument into service for this.) + + The `palette` option, when specified, causes a colour mapped image + to be created: the PNG colour type is set to 3; greyscale + must not be set; alpha must not be set; transparent must + not be set; the bit depth must be 1,2,4, or 8. When a colour + mapped image is created, the pixel values are palette indexes + and the `bitdepth` argument specifies the size of these indexes + (not the size of the colour values in the palette). + + The palette argument value should be a sequence of 3- or + 4-tuples. 3-tuples specify RGB palette entries; 4-tuples + specify RGBA palette entries. If both 4-tuples and 3-tuples + appear in the sequence then all the 4-tuples must come + before all the 3-tuples. A ``PLTE`` chunk is created; if there + are 4-tuples then a ``tRNS`` chunk is created as well. The + ``PLTE`` chunk will contain all the RGB triples in the same + sequence; the ``tRNS`` chunk will contain the alpha channel for + all the 4-tuples, in the same sequence. Palette entries + are always 8-bit. + + If specified, the `transparent` and `background` parameters must + be a tuple with three integer values for red, green, blue, or + a simple integer (or singleton tuple) for a greyscale image. + + If specified, the `gamma` parameter must be a positive number + (generally, a float). A ``gAMA`` chunk will be created. Note that + this will not change the values of the pixels as they appear in + the PNG file, they are assumed to have already been converted + appropriately for the gamma specified. + + The `compression` argument specifies the compression level + to be used by the ``zlib`` module. Higher values are likely + to compress better, but will be slower to compress. The + default for this argument is ``None``; this does not mean + no compression, rather it means that the default from the + ``zlib`` module is used (which is generally acceptable). + + If `interlace` is true then an interlaced image is created + (using PNG's so far only interace method, *Adam7*). This does not + affect how the pixels should be presented to the encoder, rather + it changes how they are arranged into the PNG file. On slow + connexions interlaced images can be partially decoded by the + browser to give a rough view of the image that is successively + refined as more image data appears. + + .. note :: + + Enabling the `interlace` option requires the entire image + to be processed in working memory. + + `chunk_limit` is used to limit the amount of memory used whilst + compressing the image. In order to avoid using large amounts of + memory, multiple ``IDAT`` chunks may be created. + """ + + # At the moment the `planes` argument is ignored; + # its purpose is to act as a dummy so that + # ``Writer(x, y, **info)`` works, where `info` is a dictionary + # returned by Reader.read and friends. + # Ditto for `colormap`. + + # A couple of helper functions come first. Best skipped if you + # are reading through. + + def isinteger(x): + try: + return int(x) == x + except: + return False + + def check_color(c, which): + """Checks that a colour argument for transparent or + background options is the right form. Also "corrects" bare + integers to 1-tuples. + """ + + if c is None: + return c + if greyscale: + try: + l = len(c) + except TypeError: + c = (c,) + if len(c) != 1: + raise ValueError("%s for greyscale must be 1-tuple" % + which) + if not isinteger(c[0]): + raise ValueError( + "%s colour for greyscale must be integer" % + which) + else: + if not (len(c) == 3 and + isinteger(c[0]) and + isinteger(c[1]) and + isinteger(c[2])): + raise ValueError( + "%s colour must be a triple of integers" % + which) + return c + + if size: + if len(size) != 2: + raise ValueError( + "size argument should be a pair (width, height)") + if width is not None and width != size[0]: + raise ValueError( + "size[0] (%r) and width (%r) should match when both are used." + % (size[0], width)) + if height is not None and height != size[1]: + raise ValueError( + "size[1] (%r) and height (%r) should match when both are used." + % (size[1], height)) + width,height = size + del size + + if width <= 0 or height <= 0: + raise ValueError("width and height must be greater than zero") + if not isinteger(width) or not isinteger(height): + raise ValueError("width and height must be integers") + # http://www.w3.org/TR/PNG/#7Integers-and-byte-order + if width > 2**32-1 or height > 2**32-1: + raise ValueError("width and height cannot exceed 2**32-1") + + if alpha and transparent is not None: + raise ValueError( + "transparent colour not allowed with alpha channel") + + if bytes_per_sample is not None: + warnings.warn('please use bitdepth instead of bytes_per_sample', + DeprecationWarning) + if bytes_per_sample not in (0.125, 0.25, 0.5, 1, 2): + raise ValueError( + "bytes per sample must be .125, .25, .5, 1, or 2") + bitdepth = int(8*bytes_per_sample) + del bytes_per_sample + if not isinteger(bitdepth) or bitdepth < 1 or 16 < bitdepth: + raise ValueError("bitdepth (%r) must be a postive integer <= 16" % + bitdepth) + + self.rescale = None + if palette: + if bitdepth not in (1,2,4,8): + raise ValueError("with palette, bitdepth must be 1, 2, 4, or 8") + if transparent is not None: + raise ValueError("transparent and palette not compatible") + if alpha: + raise ValueError("alpha and palette not compatible") + if greyscale: + raise ValueError("greyscale and palette not compatible") + else: + # No palette, check for sBIT chunk generation. + if alpha or not greyscale: + if bitdepth not in (8,16): + targetbitdepth = (8,16)[bitdepth > 8] + self.rescale = (bitdepth, targetbitdepth) + bitdepth = targetbitdepth + del targetbitdepth + else: + assert greyscale + assert not alpha + if bitdepth not in (1,2,4,8,16): + if bitdepth > 8: + targetbitdepth = 16 + elif bitdepth == 3: + targetbitdepth = 4 + else: + assert bitdepth in (5,6,7) + targetbitdepth = 8 + self.rescale = (bitdepth, targetbitdepth) + bitdepth = targetbitdepth + del targetbitdepth + + if bitdepth < 8 and (alpha or not greyscale and not palette): + raise ValueError( + "bitdepth < 8 only permitted with greyscale or palette") + if bitdepth > 8 and palette: + raise ValueError( + "bit depth must be 8 or less for images with palette") + + transparent = check_color(transparent, 'transparent') + background = check_color(background, 'background') + + # It's important that the true boolean values (greyscale, alpha, + # colormap, interlace) are converted to bool because Iverson's + # convention is relied upon later on. + self.width = width + self.height = height + self.transparent = transparent + self.background = background + self.gamma = gamma + self.greyscale = bool(greyscale) + self.alpha = bool(alpha) + self.colormap = bool(palette) + self.bitdepth = int(bitdepth) + self.compression = compression + self.chunk_limit = chunk_limit + self.interlace = bool(interlace) + self.palette = check_palette(palette) + + self.color_type = 4*self.alpha + 2*(not greyscale) + 1*self.colormap + assert self.color_type in (0,2,3,4,6) + + self.color_planes = (3,1)[self.greyscale or self.colormap] + self.planes = self.color_planes + self.alpha + # :todo: fix for bitdepth < 8 + self.psize = (self.bitdepth/8) * self.planes + + def make_palette(self): + """Create the byte sequences for a ``PLTE`` and if necessary a + ``tRNS`` chunk. Returned as a pair (*p*, *t*). *t* will be + ``None`` if no ``tRNS`` chunk is necessary. + """ + + p = array('B') + t = array('B') + + for x in self.palette: + p.extend(x[0:3]) + if len(x) > 3: + t.append(x[3]) + p = tostring(p) + t = tostring(t) + if t: + return p,t + return p,None + + def write(self, outfile, rows): + """Write a PNG image to the output file. `rows` should be + an iterable that yields each row in boxed row flat pixel format. + The rows should be the rows of the original image, so there + should be ``self.height`` rows of ``self.width * self.planes`` values. + If `interlace` is specified (when creating the instance), then + an interlaced PNG file will be written. Supply the rows in the + normal image order; the interlacing is carried out internally. + + .. note :: + + Interlacing will require the entire image to be in working memory. + """ + + if self.interlace: + fmt = 'BH'[self.bitdepth > 8] + a = array(fmt, itertools.chain(*rows)) + return self.write_array(outfile, a) + else: + nrows = self.write_passes(outfile, rows) + if nrows != self.height: + raise ValueError( + "rows supplied (%d) does not match height (%d)" % + (nrows, self.height)) + + def write_passes(self, outfile, rows, packed=False): + """ + Write a PNG image to the output file. + + Most users are expected to find the :meth:`write` or + :meth:`write_array` method more convenient. + + The rows should be given to this method in the order that + they appear in the output file. For straightlaced images, + this is the usual top to bottom ordering, but for interlaced + images the rows should have already been interlaced before + passing them to this function. + + `rows` should be an iterable that yields each row. When + `packed` is ``False`` the rows should be in boxed row flat pixel + format; when `packed` is ``True`` each row should be a packed + sequence of bytes. + + """ + + # http://www.w3.org/TR/PNG/#5PNG-file-signature + outfile.write(_signature) + + # http://www.w3.org/TR/PNG/#11IHDR + write_chunk(outfile, 'IHDR', + struct.pack("!2I5B", self.width, self.height, + self.bitdepth, self.color_type, + 0, 0, self.interlace)) + + # See :chunk:order + # http://www.w3.org/TR/PNG/#11gAMA + if self.gamma is not None: + write_chunk(outfile, 'gAMA', + struct.pack("!L", int(round(self.gamma*1e5)))) + + # See :chunk:order + # http://www.w3.org/TR/PNG/#11sBIT + if self.rescale: + write_chunk(outfile, 'sBIT', + struct.pack('%dB' % self.planes, + *[self.rescale[0]]*self.planes)) + + # :chunk:order: Without a palette (PLTE chunk), ordering is + # relatively relaxed. With one, gAMA chunk must precede PLTE + # chunk which must precede tRNS and bKGD. + # See http://www.w3.org/TR/PNG/#5ChunkOrdering + if self.palette: + p,t = self.make_palette() + write_chunk(outfile, 'PLTE', p) + if t: + # tRNS chunk is optional. Only needed if palette entries + # have alpha. + write_chunk(outfile, 'tRNS', t) + + # http://www.w3.org/TR/PNG/#11tRNS + if self.transparent is not None: + if self.greyscale: + write_chunk(outfile, 'tRNS', + struct.pack("!1H", *self.transparent)) + else: + write_chunk(outfile, 'tRNS', + struct.pack("!3H", *self.transparent)) + + # http://www.w3.org/TR/PNG/#11bKGD + if self.background is not None: + if self.greyscale: + write_chunk(outfile, 'bKGD', + struct.pack("!1H", *self.background)) + else: + write_chunk(outfile, 'bKGD', + struct.pack("!3H", *self.background)) + + # http://www.w3.org/TR/PNG/#11IDAT + if self.compression is not None: + compressor = zlib.compressobj(self.compression) + else: + compressor = zlib.compressobj() + + # Choose an extend function based on the bitdepth. The extend + # function packs/decomposes the pixel values into bytes and + # stuffs them onto the data array. + data = array('B') + if self.bitdepth == 8 or packed: + extend = data.extend + elif self.bitdepth == 16: + # Decompose into bytes + def extend(sl): + fmt = '!%dH' % len(sl) + data.extend(array('B', struct.pack(fmt, *sl))) + else: + # Pack into bytes + assert self.bitdepth < 8 + # samples per byte + spb = int(8/self.bitdepth) + def extend(sl): + a = array('B', sl) + # Adding padding bytes so we can group into a whole + # number of spb-tuples. + l = float(len(a)) + extra = math.ceil(l / float(spb))*spb - l + a.extend([0]*int(extra)) + # Pack into bytes + l = group(a, spb) + l = map(lambda e: reduce(lambda x,y: + (x << self.bitdepth) + y, e), l) + data.extend(l) + if self.rescale: + oldextend = extend + factor = \ + float(2**self.rescale[1]-1) / float(2**self.rescale[0]-1) + def extend(sl): + oldextend(map(lambda x: int(round(factor*x)), sl)) + + # Build the first row, testing mostly to see if we need to + # changed the extend function to cope with NumPy integer types + # (they cause our ordinary definition of extend to fail, so we + # wrap it). See + # http://code.google.com/p/pypng/issues/detail?id=44 + enumrows = enumerate(rows) + del rows + + # First row's filter type. + data.append(0) + # :todo: Certain exceptions in the call to ``.next()`` or the + # following try would indicate no row data supplied. + # Should catch. + i,row = enumrows.next() + try: + # If this fails... + extend(row) + except: + # ... try a version that converts the values to int first. + # Not only does this work for the (slightly broken) NumPy + # types, there are probably lots of other, unknown, "nearly" + # int types it works for. + def wrapmapint(f): + return lambda sl: f(map(int, sl)) + extend = wrapmapint(extend) + del wrapmapint + extend(row) + + for i,row in enumrows: + # Add "None" filter type. Currently, it's essential that + # this filter type be used for every scanline as we do not + # mark the first row of a reduced pass image; that means we + # could accidentally compute the wrong filtered scanline if + # we used "up", "average", or "paeth" on such a line. + data.append(0) + extend(row) + if len(data) > self.chunk_limit: + compressed = compressor.compress(tostring(data)) + if len(compressed): + # print >> sys.stderr, len(data), len(compressed) + write_chunk(outfile, 'IDAT', compressed) + # Because of our very witty definition of ``extend``, + # above, we must re-use the same ``data`` object. Hence + # we use ``del`` to empty this one, rather than create a + # fresh one (which would be my natural FP instinct). + del data[:] + if len(data): + compressed = compressor.compress(tostring(data)) + else: + compressed = '' + flushed = compressor.flush() + if len(compressed) or len(flushed): + # print >> sys.stderr, len(data), len(compressed), len(flushed) + write_chunk(outfile, 'IDAT', compressed + flushed) + # http://www.w3.org/TR/PNG/#11IEND + write_chunk(outfile, 'IEND') + return i+1 + + def write_array(self, outfile, pixels): + """ + Write an array in flat row flat pixel format as a PNG file on + the output file. See also :meth:`write` method. + """ + + if self.interlace: + self.write_passes(outfile, self.array_scanlines_interlace(pixels)) + else: + self.write_passes(outfile, self.array_scanlines(pixels)) + + def write_packed(self, outfile, rows): + """ + Write PNG file to `outfile`. The pixel data comes from `rows` + which should be in boxed row packed format. Each row should be + a sequence of packed bytes. + + Technically, this method does work for interlaced images but it + is best avoided. For interlaced images, the rows should be + presented in the order that they appear in the file. + + This method should not be used when the source image bit depth + is not one naturally supported by PNG; the bit depth should be + 1, 2, 4, 8, or 16. + """ + + if self.rescale: + raise Error("write_packed method not suitable for bit depth %d" % + self.rescale[0]) + return self.write_passes(outfile, rows, packed=True) + + def convert_pnm(self, infile, outfile): + """ + Convert a PNM file containing raw pixel data into a PNG file + with the parameters set in the writer object. Works for + (binary) PGM, PPM, and PAM formats. + """ + + if self.interlace: + pixels = array('B') + pixels.fromfile(infile, + (self.bitdepth/8) * self.color_planes * + self.width * self.height) + self.write_passes(outfile, self.array_scanlines_interlace(pixels)) + else: + self.write_passes(outfile, self.file_scanlines(infile)) + + def convert_ppm_and_pgm(self, ppmfile, pgmfile, outfile): + """ + Convert a PPM and PGM file containing raw pixel data into a + PNG outfile with the parameters set in the writer object. + """ + pixels = array('B') + pixels.fromfile(ppmfile, + (self.bitdepth/8) * self.color_planes * + self.width * self.height) + apixels = array('B') + apixels.fromfile(pgmfile, + (self.bitdepth/8) * + self.width * self.height) + pixels = interleave_planes(pixels, apixels, + (self.bitdepth/8) * self.color_planes, + (self.bitdepth/8)) + if self.interlace: + self.write_passes(outfile, self.array_scanlines_interlace(pixels)) + else: + self.write_passes(outfile, self.array_scanlines(pixels)) + + def file_scanlines(self, infile): + """ + Generates boxed rows in flat pixel format, from the input file + `infile`. It assumes that the input file is in a "Netpbm-like" + binary format, and is positioned at the beginning of the first + pixel. The number of pixels to read is taken from the image + dimensions (`width`, `height`, `planes`) and the number of bytes + per value is implied by the image `bitdepth`. + """ + + # Values per row + vpr = self.width * self.planes + row_bytes = vpr + if self.bitdepth > 8: + assert self.bitdepth == 16 + row_bytes *= 2 + fmt = '>%dH' % vpr + def line(): + return array('H', struct.unpack(fmt, infile.read(row_bytes))) + else: + def line(): + scanline = array('B', infile.read(row_bytes)) + return scanline + for y in range(self.height): + yield line() + + def array_scanlines(self, pixels): + """ + Generates boxed rows (flat pixels) from flat rows (flat pixels) + in an array. + """ + + # Values per row + vpr = self.width * self.planes + stop = 0 + for y in range(self.height): + start = stop + stop = start + vpr + yield pixels[start:stop] + + def array_scanlines_interlace(self, pixels): + """ + Generator for interlaced scanlines from an array. `pixels` is + the full source image in flat row flat pixel format. The + generator yields each scanline of the reduced passes in turn, in + boxed row flat pixel format. + """ + + # http://www.w3.org/TR/PNG/#8InterlaceMethods + # Array type. + fmt = 'BH'[self.bitdepth > 8] + # Value per row + vpr = self.width * self.planes + for xstart, ystart, xstep, ystep in _adam7: + if xstart >= self.width: + continue + # Pixels per row (of reduced image) + ppr = int(math.ceil((self.width-xstart)/float(xstep))) + # number of values in reduced image row. + row_len = ppr*self.planes + for y in range(ystart, self.height, ystep): + if xstep == 1: + offset = y * vpr + yield pixels[offset:offset+vpr] + else: + row = array(fmt) + # There's no easier way to set the length of an array + row.extend(pixels[0:row_len]) + offset = y * vpr + xstart * self.planes + end_offset = (y+1) * vpr + skip = self.planes * xstep + for i in range(self.planes): + row[i::self.planes] = \ + pixels[offset+i:end_offset:skip] + yield row + +def write_chunk(outfile, tag, data=strtobytes('')): + """ + Write a PNG chunk to the output file, including length and + checksum. + """ + + # http://www.w3.org/TR/PNG/#5Chunk-layout + outfile.write(struct.pack("!I", len(data))) + tag = strtobytes(tag) + outfile.write(tag) + outfile.write(data) + checksum = zlib.crc32(tag) + checksum = zlib.crc32(data, checksum) + checksum &= 2**32-1 + outfile.write(struct.pack("!I", checksum)) + +def write_chunks(out, chunks): + """Create a PNG file by writing out the chunks.""" + + out.write(_signature) + for chunk in chunks: + write_chunk(out, *chunk) + +def filter_scanline(type, line, fo, prev=None): + """Apply a scanline filter to a scanline. `type` specifies the + filter type (0 to 4); `line` specifies the current (unfiltered) + scanline as a sequence of bytes; `prev` specifies the previous + (unfiltered) scanline as a sequence of bytes. `fo` specifies the + filter offset; normally this is size of a pixel in bytes (the number + of bytes per sample times the number of channels), but when this is + < 1 (for bit depths < 8) then the filter offset is 1. + """ + + assert 0 <= type < 5 + + # The output array. Which, pathetically, we extend one-byte at a + # time (fortunately this is linear). + out = array('B', [type]) + + def sub(): + ai = -fo + for x in line: + if ai >= 0: + x = (x - line[ai]) & 0xff + out.append(x) + ai += 1 + def up(): + for i,x in enumerate(line): + x = (x - prev[i]) & 0xff + out.append(x) + def average(): + ai = -fo + for i,x in enumerate(line): + if ai >= 0: + x = (x - ((line[ai] + prev[i]) >> 1)) & 0xff + else: + x = (x - (prev[i] >> 1)) & 0xff + out.append(x) + ai += 1 + def paeth(): + # http://www.w3.org/TR/PNG/#9Filter-type-4-Paeth + ai = -fo # also used for ci + for i,x in enumerate(line): + a = 0 + b = prev[i] + c = 0 + + if ai >= 0: + a = line[ai] + c = prev[ai] + p = a + b - c + pa = abs(p - a) + pb = abs(p - b) + pc = abs(p - c) + if pa <= pb and pa <= pc: Pr = a + elif pb <= pc: Pr = b + else: Pr = c + + x = (x - Pr) & 0xff + out.append(x) + ai += 1 + + if not prev: + # We're on the first line. Some of the filters can be reduced + # to simpler cases which makes handling the line "off the top" + # of the image simpler. "up" becomes "none"; "paeth" becomes + # "left" (non-trivial, but true). "average" needs to be handled + # specially. + if type == 2: # "up" + return line # type = 0 + elif type == 3: + prev = [0]*len(line) + elif type == 4: # "paeth" + type = 1 + if type == 0: + out.extend(line) + elif type == 1: + sub() + elif type == 2: + up() + elif type == 3: + average() + else: # type == 4 + paeth() + return out + + +def from_array(a, mode=None, info={}): + """Create a PNG :class:`Image` object from a 2- or 3-dimensional array. + One application of this function is easy PIL-style saving: + ``png.from_array(pixels, 'L').save('foo.png')``. + + .. note : + + The use of the term *3-dimensional* is for marketing purposes + only. It doesn't actually work. Please bear with us. Meanwhile + enjoy the complimentary snacks (on request) and please use a + 2-dimensional array. + + Unless they are specified using the *info* parameter, the PNG's + height and width are taken from the array size. For a 3 dimensional + array the first axis is the height; the second axis is the width; + and the third axis is the channel number. Thus an RGB image that is + 16 pixels high and 8 wide will use an array that is 16x8x3. For 2 + dimensional arrays the first axis is the height, but the second axis + is ``width*channels``, so an RGB image that is 16 pixels high and 8 + wide will use a 2-dimensional array that is 16x24 (each row will be + 8*3==24 sample values). + + *mode* is a string that specifies the image colour format in a + PIL-style mode. It can be: + + ``'L'`` + greyscale (1 channel) + ``'LA'`` + greyscale with alpha (2 channel) + ``'RGB'`` + colour image (3 channel) + ``'RGBA'`` + colour image with alpha (4 channel) + + The mode string can also specify the bit depth (overriding how this + function normally derives the bit depth, see below). Appending + ``';16'`` to the mode will cause the PNG to be 16 bits per channel; + any decimal from 1 to 16 can be used to specify the bit depth. + + When a 2-dimensional array is used *mode* determines how many + channels the image has, and so allows the width to be derived from + the second array dimension. + + The array is expected to be a ``numpy`` array, but it can be any + suitable Python sequence. For example, a list of lists can be used: + ``png.from_array([[0, 255, 0], [255, 0, 255]], 'L')``. The exact + rules are: ``len(a)`` gives the first dimension, height; + ``len(a[0])`` gives the second dimension; ``len(a[0][0])`` gives the + third dimension, unless an exception is raised in which case a + 2-dimensional array is assumed. It's slightly more complicated than + that because an iterator of rows can be used, and it all still + works. Using an iterator allows data to be streamed efficiently. + + The bit depth of the PNG is normally taken from the array element's + datatype (but if *mode* specifies a bitdepth then that is used + instead). The array element's datatype is determined in a way which + is supposed to work both for ``numpy`` arrays and for Python + ``array.array`` objects. A 1 byte datatype will give a bit depth of + 8, a 2 byte datatype will give a bit depth of 16. If the datatype + does not have an implicit size, for example it is a plain Python + list of lists, as above, then a default of 8 is used. + + The *info* parameter is a dictionary that can be used to specify + metadata (in the same style as the arguments to the + :class:``png.Writer`` class). For this function the keys that are + useful are: + + height + overrides the height derived from the array dimensions and allows + *a* to be an iterable. + width + overrides the width derived from the array dimensions. + bitdepth + overrides the bit depth derived from the element datatype (but + must match *mode* if that also specifies a bit depth). + + Generally anything specified in the + *info* dictionary will override any implicit choices that this + function would otherwise make, but must match any explicit ones. + For example, if the *info* dictionary has a ``greyscale`` key then + this must be true when mode is ``'L'`` or ``'LA'`` and false when + mode is ``'RGB'`` or ``'RGBA'``. + """ + + # We abuse the *info* parameter by modifying it. Take a copy here. + # (Also typechecks *info* to some extent). + info = dict(info) + + # Syntax check mode string. + bitdepth = None + try: + mode = mode.split(';') + if len(mode) not in (1,2): + raise Error() + if mode[0] not in ('L', 'LA', 'RGB', 'RGBA'): + raise Error() + if len(mode) == 2: + try: + bitdepth = int(mode[1]) + except: + raise Error() + except Error: + raise Error("mode string should be 'RGB' or 'L;16' or similar.") + mode = mode[0] + + # Get bitdepth from *mode* if possible. + if bitdepth: + if info.get('bitdepth') and bitdepth != info['bitdepth']: + raise Error("mode bitdepth (%d) should match info bitdepth (%d)." % + (bitdepth, info['bitdepth'])) + info['bitdepth'] = bitdepth + + # Fill in and/or check entries in *info*. + # Dimensions. + if 'size' in info: + # Check width, height, size all match where used. + for dimension,axis in [('width', 0), ('height', 1)]: + if dimension in info: + if info[dimension] != info['size'][axis]: + raise Error( + "info[%r] shhould match info['size'][%r]." % + (dimension, axis)) + info['width'],info['height'] = info['size'] + if 'height' not in info: + try: + l = len(a) + except: + raise Error( + "len(a) does not work, supply info['height'] instead.") + info['height'] = l + # Colour format. + if 'greyscale' in info: + if bool(info['greyscale']) != ('L' in mode): + raise Error("info['greyscale'] should match mode.") + info['greyscale'] = 'L' in mode + if 'alpha' in info: + if bool(info['alpha']) != ('A' in mode): + raise Error("info['alpha'] should match mode.") + info['alpha'] = 'A' in mode + + planes = len(mode) + if 'planes' in info: + if info['planes'] != planes: + raise Error("info['planes'] should match mode.") + + # In order to work out whether we the array is 2D or 3D we need its + # first row, which requires that we take a copy of its iterator. + # We may also need the first row to derive width and bitdepth. + a,t = itertools.tee(a) + row = t.next() + del t + try: + row[0][0] + threed = True + testelement = row[0] + except: + threed = False + testelement = row + if 'width' not in info: + if threed: + width = len(row) + else: + width = len(row) // planes + info['width'] = width + + # Not implemented yet + assert not threed + + if 'bitdepth' not in info: + try: + dtype = testelement.dtype + # goto the "else:" clause. Sorry. + except: + try: + # Try a Python array.array. + bitdepth = 8 * testelement.itemsize + except: + # We can't determine it from the array element's + # datatype, use a default of 8. + bitdepth = 8 + else: + # If we got here without exception, we now assume that + # the array is a numpy array. + if dtype.kind == 'b': + bitdepth = 1 + else: + bitdepth = 8 * dtype.itemsize + info['bitdepth'] = bitdepth + + for thing in 'width height bitdepth greyscale alpha'.split(): + assert thing in info + return Image(a, info) + +# So that refugee's from PIL feel more at home. Not documented. +fromarray = from_array + +class Image: + """A PNG image. + You can create an :class:`Image` object from an array of pixels by calling + :meth:`png.from_array`. It can be saved to disk with the + :meth:`save` method.""" + def __init__(self, rows, info): + """ + .. note :: + + The constructor is not public. Please do not call it. + """ + + self.rows = rows + self.info = info + + def save(self, file): + """Save the image to *file*. If *file* looks like an open file + descriptor then it is used, otherwise it is treated as a + filename and a fresh file is opened. + + In general, you can only call this method once; after it has + been called the first time and the PNG image has been saved, the + source data will have been streamed, and cannot be streamed + again. + """ + + w = Writer(**self.info) + + try: + file.write + def close(): pass + except: + file = open(file, 'wb') + def close(): file.close() + + try: + w.write(file, self.rows) + finally: + close() + +class _readable: + """ + A simple file-like interface for strings and arrays. + """ + + def __init__(self, buf): + self.buf = buf + self.offset = 0 + + def read(self, n): + r = self.buf[self.offset:self.offset+n] + if isarray(r): + r = r.tostring() + self.offset += n + return r + + +class Reader: + """ + PNG decoder in pure Python. + """ + + def __init__(self, _guess=None, **kw): + """ + Create a PNG decoder object. + + The constructor expects exactly one keyword argument. If you + supply a positional argument instead, it will guess the input + type. You can choose among the following keyword arguments: + + filename + Name of input file (a PNG file). + file + A file-like object (object with a read() method). + bytes + ``array`` or ``string`` with PNG data. + + """ + if ((_guess is not None and len(kw) != 0) or + (_guess is None and len(kw) != 1)): + raise TypeError("Reader() takes exactly 1 argument") + + # Will be the first 8 bytes, later on. See validate_signature. + self.signature = None + self.transparent = None + # A pair of (len,type) if a chunk has been read but its data and + # checksum have not (in other words the file position is just + # past the 4 bytes that specify the chunk type). See preamble + # method for how this is used. + self.atchunk = None + + if _guess is not None: + if isarray(_guess): + kw["bytes"] = _guess + elif isinstance(_guess, str): + kw["filename"] = _guess + elif isinstance(_guess, file): + kw["file"] = _guess + + if "filename" in kw: + self.file = open(kw["filename"], "rb") + elif "file" in kw: + self.file = kw["file"] + elif "bytes" in kw: + self.file = _readable(kw["bytes"]) + else: + raise TypeError("expecting filename, file or bytes array") + + def chunk(self, seek=None): + """ + Read the next PNG chunk from the input file; returns a + (*type*,*data*) tuple. *type* is the chunk's type as a string + (all PNG chunk types are 4 characters long). *data* is the + chunk's data content, as a string. + + If the optional `seek` argument is + specified then it will keep reading chunks until it either runs + out of file or finds the type specified by the argument. Note + that in general the order of chunks in PNGs is unspecified, so + using `seek` can cause you to miss chunks. + """ + + self.validate_signature() + + while True: + # http://www.w3.org/TR/PNG/#5Chunk-layout + if not self.atchunk: + self.atchunk = self.chunklentype() + length,type = self.atchunk + self.atchunk = None + data = self.file.read(length) + if len(data) != length: + raise ChunkError('Chunk %s too short for required %i octets.' + % (type, length)) + checksum = self.file.read(4) + if len(checksum) != 4: + raise ValueError('Chunk %s too short for checksum.', tag) + if seek and type != seek: + continue + verify = zlib.crc32(strtobytes(type)) + verify = zlib.crc32(data, verify) + # Whether the output from zlib.crc32 is signed or not varies + # according to hideous implementation details, see + # http://bugs.python.org/issue1202 . + # We coerce it to be positive here (in a way which works on + # Python 2.3 and older). + verify &= 2**32 - 1 + verify = struct.pack('!I', verify) + if checksum != verify: + # print repr(checksum) + (a, ) = struct.unpack('!I', checksum) + (b, ) = struct.unpack('!I', verify) + raise ChunkError( + "Checksum error in %s chunk: 0x%08X != 0x%08X." % + (type, a, b)) + return type, data + + def chunks(self): + """Return an iterator that will yield each chunk as a + (*chunktype*, *content*) pair. + """ + + while True: + t,v = self.chunk() + yield t,v + if t == 'IEND': + break + + def undo_filter(self, filter_type, scanline, previous): + """Undo the filter for a scanline. `scanline` is a sequence of + bytes that does not include the initial filter type byte. + `previous` is decoded previous scanline (for straightlaced + images this is the previous pixel row, but for interlaced + images, it is the previous scanline in the reduced image, which + in general is not the previous pixel row in the final image). + When there is no previous scanline (the first row of a + straightlaced image, or the first row in one of the passes in an + interlaced image), then this argument should be ``None``. + + The scanline will have the effects of filtering removed, and the + result will be returned as a fresh sequence of bytes. + """ + + # :todo: Would it be better to update scanline in place? + + # Create the result byte array. It seems that the best way to + # create the array to be the right size is to copy from an + # existing sequence. *sigh* + # If we fill the result with scanline, then this allows a + # micro-optimisation in the "null" and "sub" cases. + result = array('B', scanline) + + if filter_type == 0: + # And here, we _rely_ on filling the result with scanline, + # above. + return result + + if filter_type not in (1,2,3,4): + raise FormatError('Invalid PNG Filter Type.' + ' See http://www.w3.org/TR/2003/REC-PNG-20031110/#9Filters .') + + # Filter unit. The stride from one pixel to the corresponding + # byte from the previous previous. Normally this is the pixel + # size in bytes, but when this is smaller than 1, the previous + # byte is used instead. + fu = max(1, self.psize) + + # For the first line of a pass, synthesize a dummy previous + # line. An alternative approach would be to observe that on the + # first line 'up' is the same as 'null', 'paeth' is the same + # as 'sub', with only 'average' requiring any special case. + if not previous: + previous = array('B', [0]*len(scanline)) + + def sub(): + """Undo sub filter.""" + + ai = 0 + # Loops starts at index fu. Observe that the initial part + # of the result is already filled in correctly with + # scanline. + for i in range(fu, len(result)): + x = scanline[i] + a = result[ai] + result[i] = (x + a) & 0xff + ai += 1 + + def up(): + """Undo up filter.""" + + for i in range(len(result)): + x = scanline[i] + b = previous[i] + result[i] = (x + b) & 0xff + + def average(): + """Undo average filter.""" + + ai = -fu + for i in range(len(result)): + x = scanline[i] + if ai < 0: + a = 0 + else: + a = result[ai] + b = previous[i] + result[i] = (x + ((a + b) >> 1)) & 0xff + ai += 1 + + def paeth(): + """Undo Paeth filter.""" + + # Also used for ci. + ai = -fu + for i in range(len(result)): + x = scanline[i] + if ai < 0: + a = c = 0 + else: + a = result[ai] + c = previous[ai] + b = previous[i] + p = a + b - c + pa = abs(p - a) + pb = abs(p - b) + pc = abs(p - c) + if pa <= pb and pa <= pc: + pr = a + elif pb <= pc: + pr = b + else: + pr = c + result[i] = (x + pr) & 0xff + ai += 1 + + # Call appropriate filter algorithm. Note that 0 has already + # been dealt with. + (None, sub, up, average, paeth)[filter_type]() + return result + + def deinterlace(self, raw): + """ + Read raw pixel data, undo filters, deinterlace, and flatten. + Return in flat row flat pixel format. + """ + + # print >> sys.stderr, ("Reading interlaced, w=%s, r=%s, planes=%s," + + # " bpp=%s") % (self.width, self.height, self.planes, self.bps) + # Values per row (of the target image) + vpr = self.width * self.planes + + # Make a result array, and make it big enough. Interleaving + # writes to the output array randomly (well, not quite), so the + # entire output array must be in memory. + fmt = 'BH'[self.bitdepth > 8] + a = array(fmt, [0]*vpr*self.height) + source_offset = 0 + + for xstart, ystart, xstep, ystep in _adam7: + # print >> sys.stderr, "Adam7: start=%s,%s step=%s,%s" % ( + # xstart, ystart, xstep, ystep) + if xstart >= self.width: + continue + # The previous (reconstructed) scanline. None at the + # beginning of a pass to indicate that there is no previous + # line. + recon = None + # Pixels per row (reduced pass image) + ppr = int(math.ceil((self.width-xstart)/float(xstep))) + # Row size in bytes for this pass. + row_size = int(math.ceil(self.psize * ppr)) + for y in range(ystart, self.height, ystep): + filter_type = raw[source_offset] + source_offset += 1 + scanline = raw[source_offset:source_offset+row_size] + source_offset += row_size + recon = self.undo_filter(filter_type, scanline, recon) + # Convert so that there is one element per pixel value + flat = self.serialtoflat(recon, ppr) + if xstep == 1: + assert xstart == 0 + offset = y * vpr + a[offset:offset+vpr] = flat + else: + offset = y * vpr + xstart * self.planes + end_offset = (y+1) * vpr + skip = self.planes * xstep + for i in range(self.planes): + a[offset+i:end_offset:skip] = \ + flat[i::self.planes] + return a + + def iterboxed(self, rows): + """Iterator that yields each scanline in boxed row flat pixel + format. `rows` should be an iterator that yields the bytes of + each row in turn. + """ + + def asvalues(raw): + """Convert a row of raw bytes into a flat row. Result may + or may not share with argument""" + + if self.bitdepth == 8: + return raw + if self.bitdepth == 16: + raw = tostring(raw) + return array('H', struct.unpack('!%dH' % (len(raw)//2), raw)) + assert self.bitdepth < 8 + width = self.width + # Samples per byte + spb = 8//self.bitdepth + out = array('B') + mask = 2**self.bitdepth - 1 + shifts = map(self.bitdepth.__mul__, reversed(range(spb))) + for o in raw: + out.extend(map(lambda i: mask&(o>>i), shifts)) + return out[:width] + + return itertools.imap(asvalues, rows) + + def serialtoflat(self, bytes, width=None): + """Convert serial format (byte stream) pixel data to flat row + flat pixel. + """ + + if self.bitdepth == 8: + return bytes + if self.bitdepth == 16: + bytes = tostring(bytes) + return array('H', + struct.unpack('!%dH' % (len(bytes)//2), bytes)) + assert self.bitdepth < 8 + if width is None: + width = self.width + # Samples per byte + spb = 8//self.bitdepth + out = array('B') + mask = 2**self.bitdepth - 1 + shifts = map(self.bitdepth.__mul__, reversed(range(spb))) + l = width + for o in bytes: + out.extend([(mask&(o>>s)) for s in shifts][:l]) + l -= spb + if l <= 0: + l = width + return out + + def iterstraight(self, raw): + """Iterator that undoes the effect of filtering, and yields each + row in serialised format (as a sequence of bytes). Assumes input + is straightlaced. `raw` should be an iterable that yields the + raw bytes in chunks of arbitrary size.""" + + # length of row, in bytes + rb = self.row_bytes + a = array('B') + # The previous (reconstructed) scanline. None indicates first + # line of image. + recon = None + for some in raw: + a.extend(some) + while len(a) >= rb + 1: + filter_type = a[0] + scanline = a[1:rb+1] + del a[:rb+1] + recon = self.undo_filter(filter_type, scanline, recon) + yield recon + if len(a) != 0: + # :file:format We get here with a file format error: when the + # available bytes (after decompressing) do not pack into exact + # rows. + raise FormatError( + 'Wrong size for decompressed IDAT chunk.') + assert len(a) == 0 + + def validate_signature(self): + """If signature (header) has not been read then read and + validate it; otherwise do nothing. + """ + + if self.signature: + return + self.signature = self.file.read(8) + if self.signature != _signature: + raise FormatError("PNG file has invalid signature.") + + def preamble(self): + """ + Extract the image metadata by reading the initial part of the PNG + file up to the start of the ``IDAT`` chunk. All the chunks that + precede the ``IDAT`` chunk are read and either processed for + metadata or discarded. + """ + + self.validate_signature() + + while True: + if not self.atchunk: + self.atchunk = self.chunklentype() + if self.atchunk is None: + raise FormatError( + 'This PNG file has no IDAT chunks.') + if self.atchunk[1] == 'IDAT': + return + self.process_chunk() + + def chunklentype(self): + """Reads just enough of the input to determine the next + chunk's length and type, returned as a (*length*, *type*) pair + where *type* is a string. If there are no more chunks, ``None`` + is returned. + """ + + x = self.file.read(8) + if not x: + return None + if len(x) != 8: + raise FormatError( + 'End of file whilst reading chunk length and type.') + length,type = struct.unpack('!I4s', x) + type = bytestostr(type) + if length > 2**31-1: + raise FormatError('Chunk %s is too large: %d.' % (type,length)) + return length,type + + def process_chunk(self): + """Process the next chunk and its data. This only processes the + following chunk types, all others are ignored: ``IHDR``, + ``PLTE``, ``bKGD``, ``tRNS``, ``gAMA``, ``sBIT``. + """ + + type, data = self.chunk() + if type == 'IHDR': + # http://www.w3.org/TR/PNG/#11IHDR + if len(data) != 13: + raise FormatError('IHDR chunk has incorrect length.') + (self.width, self.height, self.bitdepth, self.color_type, + self.compression, self.filter, + self.interlace) = struct.unpack("!2I5B", data) + + # Check that the header specifies only valid combinations. + if self.bitdepth not in (1,2,4,8,16): + raise Error("invalid bit depth %d" % self.bitdepth) + if self.color_type not in (0,2,3,4,6): + raise Error("invalid colour type %d" % self.color_type) + # Check indexed (palettized) images have 8 or fewer bits + # per pixel; check only indexed or greyscale images have + # fewer than 8 bits per pixel. + if ((self.color_type & 1 and self.bitdepth > 8) or + (self.bitdepth < 8 and self.color_type not in (0,3))): + raise FormatError("Illegal combination of bit depth (%d)" + " and colour type (%d)." + " See http://www.w3.org/TR/2003/REC-PNG-20031110/#table111 ." + % (self.bitdepth, self.color_type)) + if self.compression != 0: + raise Error("unknown compression method %d" % self.compression) + if self.filter != 0: + raise FormatError("Unknown filter method %d," + " see http://www.w3.org/TR/2003/REC-PNG-20031110/#9Filters ." + % self.filter) + if self.interlace not in (0,1): + raise FormatError("Unknown interlace method %d," + " see http://www.w3.org/TR/2003/REC-PNG-20031110/#8InterlaceMethods ." + % self.interlace) + + # Derived values + # http://www.w3.org/TR/PNG/#6Colour-values + colormap = bool(self.color_type & 1) + greyscale = not (self.color_type & 2) + alpha = bool(self.color_type & 4) + color_planes = (3,1)[greyscale or colormap] + planes = color_planes + alpha + + self.colormap = colormap + self.greyscale = greyscale + self.alpha = alpha + self.color_planes = color_planes + self.planes = planes + self.psize = float(self.bitdepth)/float(8) * planes + if int(self.psize) == self.psize: + self.psize = int(self.psize) + self.row_bytes = int(math.ceil(self.width * self.psize)) + # Stores PLTE chunk if present, and is used to check + # chunk ordering constraints. + self.plte = None + # Stores tRNS chunk if present, and is used to check chunk + # ordering constraints. + self.trns = None + # Stores sbit chunk if present. + self.sbit = None + elif type == 'PLTE': + # http://www.w3.org/TR/PNG/#11PLTE + if self.plte: + warnings.warn("Multiple PLTE chunks present.") + self.plte = data + if len(data) % 3 != 0: + raise FormatError( + "PLTE chunk's length should be a multiple of 3.") + if len(data) > (2**self.bitdepth)*3: + raise FormatError("PLTE chunk is too long.") + if len(data) == 0: + raise FormatError("Empty PLTE is not allowed.") + elif type == 'bKGD': + try: + if self.colormap: + if not self.plte: + warnings.warn( + "PLTE chunk is required before bKGD chunk.") + self.background = struct.unpack('B', data) + else: + self.background = struct.unpack("!%dH" % self.color_planes, + data) + except struct.error: + raise FormatError("bKGD chunk has incorrect length.") + elif type == 'tRNS': + # http://www.w3.org/TR/PNG/#11tRNS + self.trns = data + if self.colormap: + if not self.plte: + warnings.warn("PLTE chunk is required before tRNS chunk.") + else: + if len(data) > len(self.plte)/3: + # Was warning, but promoted to Error as it + # would otherwise cause pain later on. + raise FormatError("tRNS chunk is too long.") + else: + if self.alpha: + raise FormatError( + "tRNS chunk is not valid with colour type %d." % + self.color_type) + try: + self.transparent = \ + struct.unpack("!%dH" % self.color_planes, data) + except struct.error: + raise FormatError("tRNS chunk has incorrect length.") + elif type == 'gAMA': + try: + self.gamma = struct.unpack("!L", data)[0] / 100000.0 + except struct.error: + raise FormatError("gAMA chunk has incorrect length.") + elif type == 'sBIT': + self.sbit = data + if (self.colormap and len(data) != 3 or + not self.colormap and len(data) != self.planes): + raise FormatError("sBIT chunk has incorrect length.") + + def read(self): + """ + Read the PNG file and decode it. Returns (`width`, `height`, + `pixels`, `metadata`). + + May use excessive memory. + + `pixels` are returned in boxed row flat pixel format. + """ + + def iteridat(): + """Iterator that yields all the ``IDAT`` chunks as strings.""" + while True: + try: + type, data = self.chunk() + except ValueError, e: + raise ChunkError(e.args[0]) + if type == 'IEND': + # http://www.w3.org/TR/PNG/#11IEND + break + if type != 'IDAT': + continue + # type == 'IDAT' + # http://www.w3.org/TR/PNG/#11IDAT + if self.colormap and not self.plte: + warnings.warn("PLTE chunk is required before IDAT chunk") + yield data + + def iterdecomp(idat): + """Iterator that yields decompressed strings. `idat` should + be an iterator that yields the ``IDAT`` chunk data. + """ + + # Currently, with no max_length paramter to decompress, this + # routine will do one yield per IDAT chunk. So not very + # incremental. + d = zlib.decompressobj() + # Each IDAT chunk is passed to the decompressor, then any + # remaining state is decompressed out. + for data in idat: + # :todo: add a max_length argument here to limit output + # size. + yield array('B', d.decompress(data)) + yield array('B', d.flush()) + + self.preamble() + raw = iterdecomp(iteridat()) + + if self.interlace: + raw = array('B', itertools.chain(*raw)) + arraycode = 'BH'[self.bitdepth>8] + # Like :meth:`group` but producing an array.array object for + # each row. + pixels = itertools.imap(lambda *row: array(arraycode, row), + *[iter(self.deinterlace(raw))]*self.width*self.planes) + else: + pixels = self.iterboxed(self.iterstraight(raw)) + meta = dict() + for attr in 'greyscale alpha planes bitdepth interlace'.split(): + meta[attr] = getattr(self, attr) + meta['size'] = (self.width, self.height) + for attr in 'gamma transparent background'.split(): + a = getattr(self, attr, None) + if a is not None: + meta[attr] = a + return self.width, self.height, pixels, meta + + + def read_flat(self): + """ + Read a PNG file and decode it into flat row flat pixel format. + Returns (*width*, *height*, *pixels*, *metadata*). + + May use excessive memory. + + `pixels` are returned in flat row flat pixel format. + + See also the :meth:`read` method which returns pixels in the + more stream-friendly boxed row flat pixel format. + """ + + x, y, pixel, meta = self.read() + arraycode = 'BH'[meta['bitdepth']>8] + pixel = array(arraycode, itertools.chain(*pixel)) + return x, y, pixel, meta + + def palette(self, alpha='natural'): + """Returns a palette that is a sequence of 3-tuples or 4-tuples, + synthesizing it from the ``PLTE`` and ``tRNS`` chunks. These + chunks should have already been processed (for example, by + calling the :meth:`preamble` method). All the tuples are the + same size: 3-tuples if there is no ``tRNS`` chunk, 4-tuples when + there is a ``tRNS`` chunk. Assumes that the image is colour type + 3 and therefore a ``PLTE`` chunk is required. + + If the `alpha` argument is ``'force'`` then an alpha channel is + always added, forcing the result to be a sequence of 4-tuples. + """ + + if not self.plte: + raise FormatError( + "Required PLTE chunk is missing in colour type 3 image.") + plte = group(array('B', self.plte), 3) + if self.trns or alpha == 'force': + trns = array('B', self.trns or '') + trns.extend([255]*(len(plte)-len(trns))) + plte = map(operator.add, plte, group(trns, 1)) + return plte + + def asDirect(self): + """Returns the image data as a direct representation of an + ``x * y * planes`` array. This method is intended to remove the + need for callers to deal with palettes and transparency + themselves. Images with a palette (colour type 3) + are converted to RGB or RGBA; images with transparency (a + ``tRNS`` chunk) are converted to LA or RGBA as appropriate. + When returned in this format the pixel values represent the + colour value directly without needing to refer to palettes or + transparency information. + + Like the :meth:`read` method this method returns a 4-tuple: + + (*width*, *height*, *pixels*, *meta*) + + This method normally returns pixel values with the bit depth + they have in the source image, but when the source PNG has an + ``sBIT`` chunk it is inspected and can reduce the bit depth of + the result pixels; pixel values will be reduced according to + the bit depth specified in the ``sBIT`` chunk (PNG nerds should + note a single result bit depth is used for all channels; the + maximum of the ones specified in the ``sBIT`` chunk. An RGB565 + image will be rescaled to 6-bit RGB666). + + The *meta* dictionary that is returned reflects the `direct` + format and not the original source image. For example, an RGB + source image with a ``tRNS`` chunk to represent a transparent + colour, will have ``planes=3`` and ``alpha=False`` for the + source image, but the *meta* dictionary returned by this method + will have ``planes=4`` and ``alpha=True`` because an alpha + channel is synthesized and added. + + *pixels* is the pixel data in boxed row flat pixel format (just + like the :meth:`read` method). + + All the other aspects of the image data are not changed. + """ + + self.preamble() + + # Simple case, no conversion necessary. + if not self.colormap and not self.trns and not self.sbit: + return self.read() + + x,y,pixels,meta = self.read() + + if self.colormap: + meta['colormap'] = False + meta['alpha'] = bool(self.trns) + meta['bitdepth'] = 8 + meta['planes'] = 3 + bool(self.trns) + plte = self.palette() + def iterpal(pixels): + for row in pixels: + row = map(plte.__getitem__, row) + yield array('B', itertools.chain(*row)) + pixels = iterpal(pixels) + elif self.trns: + # It would be nice if there was some reasonable way of doing + # this without generating a whole load of intermediate tuples. + # But tuples does seem like the easiest way, with no other way + # clearly much simpler or much faster. (Actually, the L to LA + # conversion could perhaps go faster (all those 1-tuples!), but + # I still wonder whether the code proliferation is worth it) + it = self.transparent + maxval = 2**meta['bitdepth']-1 + planes = meta['planes'] + meta['alpha'] = True + meta['planes'] += 1 + typecode = 'BH'[meta['bitdepth']>8] + def itertrns(pixels): + for row in pixels: + # For each row we group it into pixels, then form a + # characterisation vector that says whether each pixel + # is opaque or not. Then we convert True/False to + # 0/maxval (by multiplication), and add it as the extra + # channel. + row = group(row, planes) + opa = map(it.__ne__, row) + opa = map(maxval.__mul__, opa) + opa = zip(opa) # convert to 1-tuples + yield array(typecode, + itertools.chain(*map(operator.add, row, opa))) + pixels = itertrns(pixels) + targetbitdepth = None + if self.sbit: + sbit = struct.unpack('%dB' % len(self.sbit), self.sbit) + targetbitdepth = max(sbit) + if targetbitdepth > meta['bitdepth']: + raise Error('sBIT chunk %r exceeds bitdepth %d' % + (sbit,self.bitdepth)) + if min(sbit) <= 0: + raise Error('sBIT chunk %r has a 0-entry' % sbit) + if targetbitdepth == meta['bitdepth']: + targetbitdepth = None + if targetbitdepth: + shift = meta['bitdepth'] - targetbitdepth + meta['bitdepth'] = targetbitdepth + def itershift(pixels): + for row in pixels: + yield map(shift.__rrshift__, row) + pixels = itershift(pixels) + return x,y,pixels,meta + + def asFloat(self, maxval=1.0): + """Return image pixels as per :meth:`asDirect` method, but scale + all pixel values to be floating point values between 0.0 and + *maxval*. + """ + + x,y,pixels,info = self.asDirect() + sourcemaxval = 2**info['bitdepth']-1 + del info['bitdepth'] + info['maxval'] = float(maxval) + factor = float(maxval)/float(sourcemaxval) + def iterfloat(): + for row in pixels: + yield map(factor.__mul__, row) + return x,y,iterfloat(),info + + def _as_rescale(self, get, targetbitdepth): + """Helper used by :meth:`asRGB8` and :meth:`asRGBA8`.""" + + width,height,pixels,meta = get() + maxval = 2**meta['bitdepth'] - 1 + targetmaxval = 2**targetbitdepth - 1 + factor = float(targetmaxval) / float(maxval) + meta['bitdepth'] = targetbitdepth + def iterscale(): + for row in pixels: + yield map(lambda x: int(round(x*factor)), row) + return width, height, iterscale(), meta + + def asRGB8(self): + """Return the image data as an RGB pixels with 8-bits per + sample. This is like the :meth:`asRGB` method except that + this method additionally rescales the values so that they + are all between 0 and 255 (8-bit). In the case where the + source image has a bit depth < 8 the transformation preserves + all the information; where the source image has bit depth + > 8, then rescaling to 8-bit values loses precision. No + dithering is performed. Like :meth:`asRGB`, an alpha channel + in the source image will raise an exception. + + This function returns a 4-tuple: + (*width*, *height*, *pixels*, *metadata*). + *width*, *height*, *metadata* are as per the :meth:`read` method. + + *pixels* is the pixel data in boxed row flat pixel format. + """ + + return self._as_rescale(self.asRGB, 8) + + def asRGBA8(self): + """Return the image data as RGBA pixels with 8-bits per + sample. This method is similar to :meth:`asRGB8` and + :meth:`asRGBA`: The result pixels have an alpha channel, *and* + values are rescaled to the range 0 to 255. The alpha channel is + synthesized if necessary (with a small speed penalty). + """ + + return self._as_rescale(self.asRGBA, 8) + + def asRGB(self): + """Return image as RGB pixels. RGB colour images are passed + through unchanged; greyscales are expanded into RGB + triplets (there is a small speed overhead for doing this). + + An alpha channel in the source image will raise an + exception. + + The return values are as for the :meth:`read` method + except that the *metadata* reflect the returned pixels, not the + source image. In particular, for this method + ``metadata['greyscale']`` will be ``False``. + """ + + width,height,pixels,meta = self.asDirect() + if meta['alpha']: + raise Error("will not convert image with alpha channel to RGB") + if not meta['greyscale']: + return width,height,pixels,meta + meta['greyscale'] = False + typecode = 'BH'[meta['bitdepth'] > 8] + def iterrgb(): + for row in pixels: + a = array(typecode, [0]) * 3 * width + for i in range(3): + a[i::3] = row + yield a + return width,height,iterrgb(),meta + + def asRGBA(self): + """Return image as RGBA pixels. Greyscales are expanded into + RGB triplets; an alpha channel is synthesized if necessary. + The return values are as for the :meth:`read` method + except that the *metadata* reflect the returned pixels, not the + source image. In particular, for this method + ``metadata['greyscale']`` will be ``False``, and + ``metadata['alpha']`` will be ``True``. + """ + + width,height,pixels,meta = self.asDirect() + if meta['alpha'] and not meta['greyscale']: + return width,height,pixels,meta + typecode = 'BH'[meta['bitdepth'] > 8] + maxval = 2**meta['bitdepth'] - 1 + def newarray(): + return array(typecode, [0]) * 4 * width + if meta['alpha'] and meta['greyscale']: + # LA to RGBA + def convert(): + for row in pixels: + # Create a fresh target row, then copy L channel + # into first three target channels, and A channel + # into fourth channel. + a = newarray() + for i in range(3): + a[i::4] = row[0::2] + a[3::4] = row[1::2] + yield a + elif meta['greyscale']: + # L to RGBA + def convert(): + for row in pixels: + a = newarray() + for i in range(3): + a[i::4] = row + a[3::4] = array(typecode, [maxval]) * width + yield a + else: + assert not meta['alpha'] and not meta['greyscale'] + # RGB to RGBA + def convert(): + for row in pixels: + a = newarray() + for i in range(3): + a[i::4] = row[i::3] + a[3::4] = array(typecode, [maxval]) * width + yield a + meta['alpha'] = True + meta['greyscale'] = False + return width,height,convert(),meta + + +# === Legacy Version Support === + +# :pyver:old: PyPNG works on Python versions 2.3 and 2.2, but not +# without some awkward problems. Really PyPNG works on Python 2.4 (and +# above); it works on Pythons 2.3 and 2.2 by virtue of fixing up +# problems here. It's a bit ugly (which is why it's hidden down here). +# +# Generally the strategy is one of pretending that we're running on +# Python 2.4 (or above), and patching up the library support on earlier +# versions so that it looks enough like Python 2.4. When it comes to +# Python 2.2 there is one thing we cannot patch: extended slices +# http://www.python.org/doc/2.3/whatsnew/section-slices.html. +# Instead we simply declare that features that are implemented using +# extended slices will not work on Python 2.2. +# +# In order to work on Python 2.3 we fix up a recurring annoyance involving +# the array type. In Python 2.3 an array cannot be initialised with an +# array, and it cannot be extended with a list (or other sequence). +# Both of those are repeated issues in the code. Whilst I would not +# normally tolerate this sort of behaviour, here we "shim" a replacement +# for array into place (and hope no-ones notices). You never read this. +# +# In an amusing case of warty hacks on top of warty hacks... the array +# shimming we try and do only works on Python 2.3 and above (you can't +# subclass array.array in Python 2.2). So to get it working on Python +# 2.2 we go for something much simpler and (probably) way slower. +try: + array('B').extend([]) + array('B', array('B')) +except: + # Expect to get here on Python 2.3 + try: + class _array_shim(array): + true_array = array + def __new__(cls, typecode, init=None): + super_new = super(_array_shim, cls).__new__ + it = super_new(cls, typecode) + if init is None: + return it + it.extend(init) + return it + def extend(self, extension): + super_extend = super(_array_shim, self).extend + if isinstance(extension, self.true_array): + return super_extend(extension) + if not isinstance(extension, (list, str)): + # Convert to list. Allows iterators to work. + extension = list(extension) + return super_extend(self.true_array(self.typecode, extension)) + array = _array_shim + except: + # Expect to get here on Python 2.2 + def array(typecode, init=()): + if type(init) == str: + return map(ord, init) + return list(init) + +# Further hacks to get it limping along on Python 2.2 +try: + enumerate +except: + def enumerate(seq): + i=0 + for x in seq: + yield i,x + i += 1 + +try: + reversed +except: + def reversed(l): + l = list(l) + l.reverse() + for x in l: + yield x + +try: + itertools +except: + class _dummy_itertools: + pass + itertools = _dummy_itertools() + def _itertools_imap(f, seq): + for x in seq: + yield f(x) + itertools.imap = _itertools_imap + def _itertools_chain(*iterables): + for it in iterables: + for element in it: + yield element + itertools.chain = _itertools_chain + + + +# === Internal Test Support === + +# This section comprises the tests that are internally validated (as +# opposed to tests which produce output files that are externally +# validated). Primarily they are unittests. + +# Note that it is difficult to internally validate the results of +# writing a PNG file. The only thing we can do is read it back in +# again, which merely checks consistency, not that the PNG file we +# produce is valid. + +# Run the tests from the command line: +# python -c 'import png;png.test()' + +# (For an in-memory binary file IO object) We use BytesIO where +# available, otherwise we use StringIO, but name it BytesIO. +try: + from io import BytesIO +except: + from StringIO import StringIO as BytesIO +import tempfile +# http://www.python.org/doc/2.4.4/lib/module-unittest.html +import unittest + + +def test(): + unittest.main(__name__) + +def topngbytes(name, rows, x, y, **k): + """Convenience function for creating a PNG file "in memory" as a + string. Creates a :class:`Writer` instance using the keyword arguments, + then passes `rows` to its :meth:`Writer.write` method. The resulting + PNG file is returned as a string. `name` is used to identify the file for + debugging. + """ + + import os + + print name + f = BytesIO() + w = Writer(x, y, **k) + w.write(f, rows) + if os.environ.get('PYPNG_TEST_TMP'): + w = open(name, 'wb') + w.write(f.getvalue()) + w.close() + return f.getvalue() + +def testWithIO(inp, out, f): + """Calls the function `f` with ``sys.stdin`` changed to `inp` + and ``sys.stdout`` changed to `out`. They are restored when `f` + returns. This function returns whatever `f` returns. + """ + + import os + + try: + oldin,sys.stdin = sys.stdin,inp + oldout,sys.stdout = sys.stdout,out + x = f() + finally: + sys.stdin = oldin + sys.stdout = oldout + if os.environ.get('PYPNG_TEST_TMP') and hasattr(out,'getvalue'): + name = mycallersname() + if name: + w = open(name+'.png', 'wb') + w.write(out.getvalue()) + w.close() + return x + +def mycallersname(): + """Returns the name of the caller of the caller of this function + (hence the name of the caller of the function in which + "mycallersname()" textually appears). Returns None if this cannot + be determined.""" + + # http://docs.python.org/library/inspect.html#the-interpreter-stack + import inspect + + frame = inspect.currentframe() + if not frame: + return None + frame_,filename_,lineno_,funname,linelist_,listi_ = ( + inspect.getouterframes(frame)[2]) + return funname + +def seqtobytes(s): + """Convert a sequence of integers to a *bytes* instance. Good for + plastering over Python 2 / Python 3 cracks. + """ + + return strtobytes(''.join(chr(x) for x in s)) + +class Test(unittest.TestCase): + # This member is used by the superclass. If we don't define a new + # class here then when we use self.assertRaises() and the PyPNG code + # raises an assertion then we get no proper traceback. I can't work + # out why, but defining a new class here means we get a proper + # traceback. + class failureException(Exception): + pass + + def helperLN(self, n): + mask = (1 << n) - 1 + # Use small chunk_limit so that multiple chunk writing is + # tested. Making it a test for Issue 20. + w = Writer(15, 17, greyscale=True, bitdepth=n, chunk_limit=99) + f = BytesIO() + w.write_array(f, array('B', map(mask.__and__, range(1, 256)))) + r = Reader(bytes=f.getvalue()) + x,y,pixels,meta = r.read() + self.assertEqual(x, 15) + self.assertEqual(y, 17) + self.assertEqual(list(itertools.chain(*pixels)), + map(mask.__and__, range(1,256))) + def testL8(self): + return self.helperLN(8) + def testL4(self): + return self.helperLN(4) + def testL2(self): + "Also tests asRGB8." + w = Writer(1, 4, greyscale=True, bitdepth=2) + f = BytesIO() + w.write_array(f, array('B', range(4))) + r = Reader(bytes=f.getvalue()) + x,y,pixels,meta = r.asRGB8() + self.assertEqual(x, 1) + self.assertEqual(y, 4) + for i,row in enumerate(pixels): + self.assertEqual(len(row), 3) + self.assertEqual(list(row), [0x55*i]*3) + def testP2(self): + "2-bit palette." + a = (255,255,255) + b = (200,120,120) + c = (50,99,50) + w = Writer(1, 4, bitdepth=2, palette=[a,b,c]) + f = BytesIO() + w.write_array(f, array('B', (0,1,1,2))) + r = Reader(bytes=f.getvalue()) + x,y,pixels,meta = r.asRGB8() + self.assertEqual(x, 1) + self.assertEqual(y, 4) + self.assertEqual(list(pixels), map(list, [a, b, b, c])) + def testPtrns(self): + "Test colour type 3 and tRNS chunk (and 4-bit palette)." + a = (50,99,50,50) + b = (200,120,120,80) + c = (255,255,255) + d = (200,120,120) + e = (50,99,50) + w = Writer(3, 3, bitdepth=4, palette=[a,b,c,d,e]) + f = BytesIO() + w.write_array(f, array('B', (4, 3, 2, 3, 2, 0, 2, 0, 1))) + r = Reader(bytes=f.getvalue()) + x,y,pixels,meta = r.asRGBA8() + self.assertEqual(x, 3) + self.assertEqual(y, 3) + c = c+(255,) + d = d+(255,) + e = e+(255,) + boxed = [(e,d,c),(d,c,a),(c,a,b)] + flat = map(lambda row: itertools.chain(*row), boxed) + self.assertEqual(map(list, pixels), map(list, flat)) + def testRGBtoRGBA(self): + "asRGBA8() on colour type 2 source.""" + # Test for Issue 26 + r = Reader(bytes=_pngsuite['basn2c08']) + x,y,pixels,meta = r.asRGBA8() + # Test the pixels at row 9 columns 0 and 1. + row9 = list(pixels)[9] + self.assertEqual(row9[0:8], + [0xff, 0xdf, 0xff, 0xff, 0xff, 0xde, 0xff, 0xff]) + def testLtoRGBA(self): + "asRGBA() on grey source.""" + # Test for Issue 60 + r = Reader(bytes=_pngsuite['basi0g08']) + x,y,pixels,meta = r.asRGBA() + row9 = list(list(pixels)[9]) + self.assertEqual(row9[0:8], + [222, 222, 222, 255, 221, 221, 221, 255]) + def testCtrns(self): + "Test colour type 2 and tRNS chunk." + # Test for Issue 25 + r = Reader(bytes=_pngsuite['tbrn2c08']) + x,y,pixels,meta = r.asRGBA8() + # I just happen to know that the first pixel is transparent. + # In particular it should be #7f7f7f00 + row0 = list(pixels)[0] + self.assertEqual(tuple(row0[0:4]), (0x7f, 0x7f, 0x7f, 0x00)) + def testAdam7read(self): + """Adam7 interlace reading. + Specifically, test that for images in the PngSuite that + have both an interlaced and straightlaced pair that both + images from the pair produce the same array of pixels.""" + for candidate in _pngsuite: + if not candidate.startswith('basn'): + continue + candi = candidate.replace('n', 'i') + if candi not in _pngsuite: + continue + print 'adam7 read', candidate + straight = Reader(bytes=_pngsuite[candidate]) + adam7 = Reader(bytes=_pngsuite[candi]) + # Just compare the pixels. Ignore x,y (because they're + # likely to be correct?); metadata is ignored because the + # "interlace" member differs. Lame. + straight = straight.read()[2] + adam7 = adam7.read()[2] + self.assertEqual(map(list, straight), map(list, adam7)) + def testAdam7write(self): + """Adam7 interlace writing. + For each test image in the PngSuite, write an interlaced + and a straightlaced version. Decode both, and compare results. + """ + # Not such a great test, because the only way we can check what + # we have written is to read it back again. + + for name,bytes in _pngsuite.items(): + # Only certain colour types supported for this test. + if name[3:5] not in ['n0', 'n2', 'n4', 'n6']: + continue + it = Reader(bytes=bytes) + x,y,pixels,meta = it.read() + pngi = topngbytes('adam7wn'+name+'.png', pixels, + x=x, y=y, bitdepth=it.bitdepth, + greyscale=it.greyscale, alpha=it.alpha, + transparent=it.transparent, + interlace=False) + x,y,ps,meta = Reader(bytes=pngi).read() + it = Reader(bytes=bytes) + x,y,pixels,meta = it.read() + pngs = topngbytes('adam7wi'+name+'.png', pixels, + x=x, y=y, bitdepth=it.bitdepth, + greyscale=it.greyscale, alpha=it.alpha, + transparent=it.transparent, + interlace=True) + x,y,pi,meta = Reader(bytes=pngs).read() + self.assertEqual(map(list, ps), map(list, pi)) + def testPGMin(self): + """Test that the command line tool can read PGM files.""" + def do(): + return _main(['testPGMin']) + s = BytesIO() + s.write(strtobytes('P5 2 2 3\n')) + s.write(strtobytes('\x00\x01\x02\x03')) + s.flush() + s.seek(0) + o = BytesIO() + testWithIO(s, o, do) + r = Reader(bytes=o.getvalue()) + x,y,pixels,meta = r.read() + self.assertTrue(r.greyscale) + self.assertEqual(r.bitdepth, 2) + def testPAMin(self): + """Test that the command line tool can read PAM file.""" + def do(): + return _main(['testPAMin']) + s = BytesIO() + s.write(strtobytes('P7\nWIDTH 3\nHEIGHT 1\nDEPTH 4\nMAXVAL 255\n' + 'TUPLTYPE RGB_ALPHA\nENDHDR\n')) + # The pixels in flat row flat pixel format + flat = [255,0,0,255, 0,255,0,120, 0,0,255,30] + asbytes = seqtobytes(flat) + s.write(asbytes) + s.flush() + s.seek(0) + o = BytesIO() + testWithIO(s, o, do) + r = Reader(bytes=o.getvalue()) + x,y,pixels,meta = r.read() + self.assertTrue(r.alpha) + self.assertTrue(not r.greyscale) + self.assertEqual(list(itertools.chain(*pixels)), flat) + def testLA4(self): + """Create an LA image with bitdepth 4.""" + bytes = topngbytes('la4.png', [[5, 12]], 1, 1, + greyscale=True, alpha=True, bitdepth=4) + sbit = Reader(bytes=bytes).chunk('sBIT')[1] + self.assertEqual(sbit, strtobytes('\x04\x04')) + def testPNMsbit(self): + """Test that PNM files can generates sBIT chunk.""" + def do(): + return _main(['testPNMsbit']) + s = BytesIO() + s.write(strtobytes('P6 8 1 1\n')) + for pixel in range(8): + s.write(struct.pack('>sys.stderr, "skipping numpy test" + return + + rows = [map(numpy.uint16, range(0,0x10000,0x5555))] + b = topngbytes('numpyuint16.png', rows, 4, 1, + greyscale=True, alpha=False, bitdepth=16) + def testNumpyuint8(self): + """numpy uint8.""" + + try: + import numpy + except ImportError: + print >>sys.stderr, "skipping numpy test" + return + + rows = [map(numpy.uint8, range(0,0x100,0x55))] + b = topngbytes('numpyuint8.png', rows, 4, 1, + greyscale=True, alpha=False, bitdepth=8) + def testNumpybool(self): + """numpy bool.""" + + try: + import numpy + except ImportError: + print >>sys.stderr, "skipping numpy test" + return + + rows = [map(numpy.bool, [0,1])] + b = topngbytes('numpybool.png', rows, 2, 1, + greyscale=True, alpha=False, bitdepth=1) + def testNumpyarray(self): + """numpy array.""" + try: + import numpy + except ImportError: + print >>sys.stderr, "skipping numpy test" + return + + pixels = numpy.array([[0,0x5555],[0x5555,0xaaaa]], numpy.uint16) + img = from_array(pixels, 'L') + img.save('testnumpyL16.png') + +# === Command Line Support === + +def _dehex(s): + """Liberally convert from hex string to binary string.""" + import re + import binascii + + # Remove all non-hexadecimal digits + s = re.sub(r'[^a-fA-F\d]', '', s) + # binscii.unhexlify works in Python 2 and Python 3 (unlike + # thing.decode('hex')). + return binascii.unhexlify(strtobytes(s)) +def _enhex(s): + """Convert from binary string (bytes) to hex string (str).""" + + import binascii + + return bytestostr(binascii.hexlify(s)) + +# Copies of PngSuite test files taken +# from http://www.schaik.com/pngsuite/pngsuite_bas_png.html +# on 2009-02-19 by drj and converted to hex. +# Some of these are not actually in PngSuite (but maybe they should +# be?), they use the same naming scheme, but start with a capital +# letter. +_pngsuite = { + 'basi0g01': _dehex(""" +89504e470d0a1a0a0000000d49484452000000200000002001000000012c0677 +cf0000000467414d41000186a031e8965f0000009049444154789c2d8d310ec2 +300c45dfc682c415187a00a42e197ab81e83b127e00c5639001363a580d8582c +65c910357c4b78b0bfbfdf4f70168c19e7acb970a3f2d1ded9695ce5bf5963df +d92aaf4c9fd927ea449e6487df5b9c36e799b91bdf082b4d4bd4014fe4014b01 +ab7a17aee694d28d328a2d63837a70451e1648702d9a9ff4a11d2f7a51aa21e5 +a18c7ffd0094e3511d661822f20000000049454e44ae426082 +"""), + 'basi0g02': _dehex(""" +89504e470d0a1a0a0000000d49484452000000200000002002000000016ba60d +1f0000000467414d41000186a031e8965f0000005149444154789c635062e860 +00e17286bb609c93c370ec189494960631366e4467b3ae675dcf10f521ea0303 +90c1ca006444e11643482064114a4852c710baea3f18c31918020c30410403a6 +0ac1a09239009c52804d85b6d97d0000000049454e44ae426082 +"""), + 'basi0g04': _dehex(""" +89504e470d0a1a0a0000000d4948445200000020000000200400000001e4e6f8 +bf0000000467414d41000186a031e8965f000000ae49444154789c658e5111c2 +301044171c141c141c041c843a287510ea20d441c041c141c141c04191102454 +03994998cecd7edcecedbb9bdbc3b2c2b6457545fbc4bac1be437347f7c66a77 +3c23d60db15e88f5c5627338a5416c2e691a9b475a89cd27eda12895ae8dfdab +43d61e590764f5c83a226b40d669bec307f93247701687723abf31ff83a2284b +a5b4ae6b63ac6520ad730ca4ed7b06d20e030369bd6720ed383290360406d24e +13811f2781eba9d34d07160000000049454e44ae426082 +"""), + 'basi0g08': _dehex(""" +89504e470d0a1a0a0000000d4948445200000020000000200800000001211615 +be0000000467414d41000186a031e8965f000000b549444154789cb5905d0ac2 +3010849dbac81c42c47bf843cf253e8878b0aa17110f214bdca6be240f5d21a5 +94ced3e49bcd322c1624115515154998aa424822a82a5624a1aa8a8b24c58f99 +999908130989a04a00d76c2c09e76cf21adcb209393a6553577da17140a2c59e +70ecbfa388dff1f03b82fb82bd07f05f7cb13f80bb07ad2fd60c011c3c588eef +f1f4e03bbec7ce832dca927aea005e431b625796345307b019c845e6bfc3bb98 +769d84f9efb02ea6c00f9bb9ff45e81f9f280000000049454e44ae426082 +"""), + 'basi0g16': _dehex(""" +89504e470d0a1a0a0000000d49484452000000200000002010000000017186c9 +fd0000000467414d41000186a031e8965f000000e249444154789cb5913b0ec2 +301044c7490aa8f85d81c3e4301c8f53a4ca0da8902c8144b3920b4043111282 +23bc4956681a6bf5fc3c5a3ba0448912d91a4de2c38dd8e380231eede4c4f7a1 +4677700bec7bd9b1d344689315a3418d1a6efbe5b8305ba01f8ff4808c063e26 +c60d5c81edcf6c58c535e252839e93801b15c0a70d810ae0d306b205dc32b187 +272b64057e4720ff0502154034831520154034c3df81400510cdf0015c86e5cc +5c79c639fddba9dcb5456b51d7980eb52d8e7d7fa620a75120d6064641a05120 +b606771a05626b401a05f1f589827cf0fe44c1f0bae0055698ee8914fffffe00 +00000049454e44ae426082 +"""), + 'basi2c08': _dehex(""" +89504e470d0a1a0a0000000d49484452000000200000002008020000018b1fdd +350000000467414d41000186a031e8965f000000f249444154789cd59341aa04 +210c44abc07b78133d59d37333bd89d76868b566d10cf4675af8596431a11662 +7c5688919280e312257dd6a0a4cf1a01008ee312a5f3c69c37e6fcc3f47e6776 +a07f8bdaf5b40feed2d33e025e2ff4fe2d4a63e1a16d91180b736d8bc45854c5 +6d951863f4a7e0b66dcf09a900f3ffa2948d4091e53ca86c048a64390f662b50 +4a999660ced906182b9a01a8be00a56404a6ede182b1223b4025e32c4de34304 +63457680c93aada6c99b73865aab2fc094920d901a203f5ddfe1970d28456783 +26cffbafeffcd30654f46d119be4793f827387fc0d189d5bc4d69a3c23d45a7f +db803146578337df4d0a3121fc3d330000000049454e44ae426082 +"""), + 'basi2c16': _dehex(""" +89504e470d0a1a0a0000000d4948445200000020000000201002000001db8f01 +760000000467414d41000186a031e8965f0000020a49444154789cd5962173e3 +3010853fcf1838cc61a1818185a53e56787fa13fa130852e3b5878b4b0b03081 +b97f7030070b53e6b057a0a8912bbb9163b9f109ececbc59bd7dcf2b45492409 +d66f00eb1dd83cb5497d65456aeb8e1040913b3b2c04504c936dd5a9c7e2c6eb +b1b8f17a58e8d043da56f06f0f9f62e5217b6ba3a1b76f6c9e99e8696a2a72e2 +c4fb1e4d452e92ec9652b807486d12b6669be00db38d9114b0c1961e375461a5 +5f76682a85c367ad6f682ff53a9c2a353191764b78bb07d8ddc3c97c1950f391 +6745c7b9852c73c2f212605a466a502705c8338069c8b9e84efab941eb393a97 +d4c9fd63148314209f1c1d3434e847ead6380de291d6f26a25c1ebb5047f5f24 +d85c49f0f22cc1d34282c72709cab90477bf25b89d49f0f351822297e0ea9704 +f34c82bc94002448ede51866e5656aef5d7c6a385cb4d80e6a538ceba04e6df2 +480e9aa84ddedb413bb5c97b3838456df2d4fec2c7a706983e7474d085fae820 +a841776a83073838973ac0413fea2f1dc4a06e71108fda73109bdae48954ad60 +bf867aac3ce44c7c1589a711cf8a81df9b219679d96d1cec3d8bbbeaa2012626 +df8c7802eda201b2d2e0239b409868171fc104ba8b76f10b4da09f6817ffc609 +c413ede267fd1fbab46880c90f80eccf0013185eb48b47ba03df2bdaadef3181 +cb8976f18e13188768170f98c0f844bb78cb04c62ddac59d09fc3fa25dfc1da4 +14deb3df1344f70000000049454e44ae426082 +"""), + 'basi3p08': _dehex(""" +89504e470d0a1a0a0000000d494844520000002000000020080300000133a3ba +500000000467414d41000186a031e8965f00000300504c5445224400f5ffed77 +ff77cbffff110a003a77002222ffff11ff110000222200ffac5566ff66ff6666 +ff01ff221200dcffffccff994444ff005555220000cbcbff44440055ff55cbcb +00331a00ffecdcedffffe4ffcbffdcdc44ff446666ff330000442200ededff66 +6600ffa444ffffaaeded0000cbcbfefffffdfffeffff0133ff33552a000101ff +8888ff00aaaa010100440000888800ffe4cbba5b0022ff22663200ffff99aaaa +ff550000aaaa00cb630011ff11d4ffaa773a00ff4444dc6b0066000001ff0188 +4200ecffdc6bdc00ffdcba00333300ed00ed7300ffff88994a0011ffff770000 +ff8301ffbabafe7b00fffeff00cb00ff999922ffff880000ffff77008888ffdc +ff1a33000000aa33ffff009900990000000001326600ffbaff44ffffffaaff00 +770000fefeaa00004a9900ffff66ff22220000998bff1155ffffff0101ff88ff +005500001111fffffefffdfea4ff4466ffffff66ff003300ffff55ff77770000 +88ff44ff00110077ffff006666ffffed000100fff5ed1111ffffff44ff22ffff +eded11110088ffff00007793ff2200dcdc3333fffe00febabaff99ffff333300 +63cb00baba00acff55ffffdcffff337bfe00ed00ed5555ffaaffffdcdcff5555 +00000066dcdc00dc00dc83ff017777fffefeffffffcbff5555777700fefe00cb +00cb0000fe010200010000122200ffff220044449bff33ffd4aa0000559999ff +999900ba00ba2a5500ffcbcbb4ff66ff9b33ffffbaaa00aa42880053aa00ffaa +aa0000ed00babaffff1100fe00000044009999990099ffcc99ba000088008800 +dc00ff93220000dcfefffeaa5300770077020100cb0000000033ffedff00ba00 +ff3333edffedffc488bcff7700aa00660066002222dc0000ffcbffdcffdcff8b +110000cb00010155005500880000002201ffffcbffcbed0000ff88884400445b +ba00ffbc77ff99ff006600baffba00777773ed00fe00003300330000baff77ff +004400aaffaafffefe000011220022c4ff8800eded99ff99ff55ff002200ffb4 +661100110a1100ff1111dcffbabaffff88ff88010001ff33ffb98ed362000002 +a249444154789c65d0695c0b001806f03711a9904a94d24dac63292949e5a810 +d244588a14ca5161d1a1323973252242d62157d12ae498c8124d25ca3a11398a +16e55a3cdffab0ffe7f77d7fcff3528645349b584c3187824d9d19d4ec2e3523 +9eb0ae975cf8de02f2486d502191841b42967a1ad49e5ddc4265f69a899e26b5 +e9e468181baae3a71a41b95669da8df2ea3594c1b31046d7b17bfb86592e4cbe +d89b23e8db0af6304d756e60a8f4ad378bdc2552ae5948df1d35b52143141533 +33bbbbababebeb3b3bc9c9c9c6c6c0c0d7b7b535323225a5aa8a02024a4bedec +0a0a2a2bcdcd7d7cf2f3a9a9c9cdcdd8b8adcdd5b5ababa828298982824a4ab2 +b21212acadbdbc1414e2e24859b9a72730302f4f49292c4c57373c9c0a0b7372 +8c8c1c1c3a3a92936d6dfdfd293e3e26262a4a4eaea2424b4b5fbfbc9c323278 +3c0b0ba1303abaae8ecdeeed950d6669a9a7a7a141d4de9e9d5d5cdcd2229b94 +c572716132f97cb1d8db9bc3110864a39795d9db6b6a26267a7a9a98d4d6a6a7 +cb76090ef6f030354d4d75766e686030545464cb393a1a1ac6c68686eae8f8f9 +a9aa4644c8b66d6e1689dcdd2512a994cb35330b0991ad9f9b6b659596a6addd +d8282fafae5e5323fb8f41d01f76c22fd8061be01bfc041a0323e1002c81cd30 +0b9ec027a0c930014ec035580fc3e112bc069a0b53e11c0c8095f00176c163a0 +e5301baec06a580677600ddc05ba0f13e120bc81a770133ec355a017300d4ec2 +0c7800bbe1219c02fa08f3e13c1c85dbb00a2ec05ea0dff00a6ec15a98027360 +070c047a06d7e1085c84f1b014f6c03fa0b33018b6c0211801ebe018fc00da0a +6f61113c877eb01d4ec317a085700f26c130f80efbe132bc039a0733e106fc81 +f7f017f6c10aa0d1300a0ec374780943e1382c06fa0a9b60238c83473016cec0 +02f80f73fefe1072afc1e50000000049454e44ae426082 +"""), + 'basi6a08': _dehex(""" +89504e470d0a1a0a0000000d4948445200000020000000200806000001047d4a +620000000467414d41000186a031e8965f0000012049444154789cc595414ec3 +3010459fa541b8bbb26641b8069b861e8b4d12c1c112c1452a710a2a65d840d5 +949041fc481ec98ae27c7f3f8d27e3e4648047600fec0d1f390fbbe2633a31e2 +9389e4e4ea7bfdbf3d9a6b800ab89f1bd6b553cfcbb0679e960563d72e0a9293 +b7337b9f988cc67f5f0e186d20e808042f1c97054e1309da40d02d7e27f92e03 +6cbfc64df0fc3117a6210a1b6ad1a00df21c1abcf2a01944c7101b0cb568a001 +909c9cf9e399cf3d8d9d4660a875405d9a60d000b05e2de55e25780b7a5268e0 +622118e2399aab063a815808462f1ab86890fc2e03e48bb109ded7d26ce4bf59 +0db91bac0050747fec5015ce80da0e5700281be533f0ce6d5900b59bcb00ea6d +200314cf801faab200ea752803a8d7a90c503a039f824a53f4694e7342000000 +0049454e44ae426082 +"""), + 'basn0g01': _dehex(""" +89504e470d0a1a0a0000000d49484452000000200000002001000000005b0147 +590000000467414d41000186a031e8965f0000005b49444154789c2dccb10903 +300c05d1ebd204b24a200b7a346f90153c82c18d0a61450751f1e08a2faaead2 +a4846ccea9255306e753345712e211b221bf4b263d1b427325255e8bdab29e6f +6aca30692e9d29616ee96f3065f0bf1f1087492fd02f14c90000000049454e44 +ae426082 +"""), + 'basn0g02': _dehex(""" +89504e470d0a1a0a0000000d49484452000000200000002002000000001ca13d +890000000467414d41000186a031e8965f0000001f49444154789c6360085df5 +1f8cf1308850c20053868f0133091f6390b90700bd497f818b0989a900000000 +49454e44ae426082 +"""), + # A version of basn0g04 dithered down to 3 bits. + 'Basn0g03': _dehex(""" +89504e470d0a1a0a0000000d494844520000002000000020040000000093e1c8 +2900000001734249540371d88211000000fd49444154789c6d90d18906210c84 +c356f22356b2889588604301b112112b11d94a96bb495cf7fe87f32d996f2689 +44741cc658e39c0b118f883e1f63cc89dafbc04c0f619d7d898396c54b875517 +83f3a2e7ac09a2074430e7f497f00f1138a5444f82839c5206b1f51053cca968 +63258821e7f2b5438aac16fbecc052b646e709de45cf18996b29648508728612 +952ca606a73566d44612b876845e9a347084ea4868d2907ff06be4436c4b41a3 +a3e1774285614c5affb40dbd931a526619d9fa18e4c2be420858de1df0e69893 +a0e3e5523461be448561001042b7d4a15309ce2c57aef2ba89d1c13794a109d7 +b5880aa27744fc5c4aecb5e7bcef5fe528ec6293a930690000000049454e44ae +426082 +"""), + 'basn0g04': _dehex(""" +89504e470d0a1a0a0000000d494844520000002000000020040000000093e1c8 +290000000467414d41000186a031e8965f0000004849444154789c6360601014 +545232367671090d4d4b2b2f6720430095dbd1418e002a77e64c720450b9ab56 +912380caddbd9b1c0154ee9933e408a072efde25470095fbee1d1902001f14ee +01eaff41fa0000000049454e44ae426082 +"""), + 'basn0g08': _dehex(""" +89504e470d0a1a0a0000000d4948445200000020000000200800000000561125 +280000000467414d41000186a031e8965f0000004149444154789c6364602400 +1408c8b30c05058c0f0829f8f71f3f6079301c1430ca11906764a2795c0c0605 +8c8ff0cafeffcff887e67131181430cae0956564040050e5fe7135e2d8590000 +000049454e44ae426082 +"""), + 'basn0g16': _dehex(""" +89504e470d0a1a0a0000000d49484452000000200000002010000000000681f9 +6b0000000467414d41000186a031e8965f0000005e49444154789cd5d2310ac0 +300c4351395bef7fc6dca093c0287b32d52a04a3d98f3f3880a7b857131363a0 +3a82601d089900dd82f640ca04e816dc06422640b7a03d903201ba05b7819009 +d02d680fa44c603f6f07ec4ff41938cf7f0016d84bd85fae2b9fd70000000049 +454e44ae426082 +"""), + 'basn2c08': _dehex(""" +89504e470d0a1a0a0000000d4948445200000020000000200802000000fc18ed +a30000000467414d41000186a031e8965f0000004849444154789cedd5c10900 +300c024085ec91fdb772133b442bf4a1f8cee12bb40d043b800a14f81ca0ede4 +7d4c784081020f4a871fc284071428f0a0743823a94081bb7077a3c00182b1f9 +5e0f40cf4b0000000049454e44ae426082 +"""), + 'basn2c16': _dehex(""" +89504e470d0a1a0a0000000d4948445200000020000000201002000000ac8831 +e00000000467414d41000186a031e8965f000000e549444154789cd596c10a83 +301044a7e0417fcb7eb7fdadf6961e06039286266693cc7a188645e43dd6a08f +1042003e2fe09aef6472737e183d27335fcee2f35a77b702ebce742870a23397 +f3edf2705dd10160f3b2815fe8ecf2027974a6b0c03f74a6e4192843e75c6c03 +35e8ec3202f5e84c0181bbe8cca967a00d9df3491bb040671f2e6087ce1c2860 +8d1e05f8c7ee0f1d00b667e70df44467ef26d01fbd9bc028f42860f71d188bce +fb8d3630039dbd59601e7ab3c06cf428507f0634d039afdc80123a7bb1801e7a +b1802a7a14c89f016d74ce331bf080ce9e08f8414f04bca133bfe642fe5e07bb +c4ec0000000049454e44ae426082 +"""), + 'basn6a08': _dehex(""" +89504e470d0a1a0a0000000d4948445200000020000000200806000000737a7a +f40000000467414d41000186a031e8965f0000006f49444154789cedd6310a80 +300c46e12764684fa1f73f55048f21c4ddc545781d52e85028fc1f4d28d98a01 +305e7b7e9cffba33831d75054703ca06a8f90d58a0074e351e227d805c8254e3 +1bb0420f5cdc2e0079208892ffe2a00136a07b4007943c1004d900195036407f +011bf00052201a9c160fb84c0000000049454e44ae426082 +"""), + 'cs3n3p08': _dehex(""" +89504e470d0a1a0a0000000d494844520000002000000020080300000044a48a +c60000000467414d41000186a031e8965f0000000373424954030303a392a042 +00000054504c544592ff0000ff9200ffff00ff0000dbff00ff6dffb600006dff +b6ff00ff9200dbff000049ffff2400ff000024ff0049ff0000ffdb00ff4900ff +b6ffff0000ff2400b6ffffdb000092ffff6d000024ffff49006dff00df702b17 +0000004b49444154789c85cac70182000000b1b3625754b0edbfa72324ef7486 +184ed0177a437b680bcdd0031c0ed00ea21f74852ed00a1c9ed0086da0057487 +6ed0121cd6d004bda0013a421ff803224033e177f4ae260000000049454e44ae +426082 +"""), + 's09n3p02': _dehex(""" +89504e470d0a1a0a0000000d49484452000000090000000902030000009dffee +830000000467414d41000186a031e8965f000000037342495404040477f8b5a3 +0000000c504c544500ff000077ffff00ffff7700ff5600640000001f49444154 +789c63600002fbff0c0c56ab19182ca381581a4283f82071200000696505c36a +437f230000000049454e44ae426082 +"""), + 'tbgn3p08': _dehex(""" +89504e470d0a1a0a0000000d494844520000002000000020080300000044a48a +c60000000467414d41000186a031e8965f00000207504c54457f7f7fafafafab +abab110000222200737300999999510d00444400959500959595e6e600919191 +8d8d8d620d00898989666600b7b700911600000000730d007373736f6f6faaaa +006b6b6b676767c41a00cccc0000f30000ef00d51e0055555567670000dd0051 +515100d1004d4d4de61e0038380000b700160d0d00ab00560d00090900009500 +009100008d003333332f2f2f2f2b2f2b2b000077007c7c001a05002b27000073 +002b2b2b006f00bb1600272727780d002323230055004d4d00cc1e00004d00cc +1a000d00003c09006f6f00002f003811271111110d0d0d55554d090909001100 +4d0900050505000d00e2e200000900000500626200a6a6a6a2a2a29e9e9e8484 +00fb00fbd5d500801100800d00ea00ea555500a6a600e600e6f7f700e200e233 +0500888888d900d9848484c01a007777003c3c05c8c8008080804409007c7c7c +bb00bbaa00aaa600a61e09056262629e009e9a009af322005e5e5e05050000ee +005a5a5adddd00a616008d008d00e20016050027270088110078780000c40078 +00787300736f006f44444400aa00c81e004040406600663c3c3c090000550055 +1a1a00343434d91e000084004d004d007c004500453c3c00ea1e00222222113c +113300331e1e1efb22001a1a1a004400afaf00270027003c001616161e001e0d +160d2f2f00808000001e00d1d1001100110d000db7b7b7090009050005b3b3b3 +6d34c4230000000174524e530040e6d86600000001624b474402660b7c640000 +01f249444154789c6360c0048c8c58049100575f215ee92e6161ef109cd2a15e +4b9645ce5d2c8f433aa4c24f3cbd4c98833b2314ab74a186f094b9c2c27571d2 +6a2a58e4253c5cda8559057a392363854db4d9d0641973660b0b0bb76bb16656 +06970997256877a07a95c75a1804b2fbcd128c80b482a0b0300f8a824276a9a8 +ec6e61612b3e57ee06fbf0009619d5fac846ac5c60ed20e754921625a2daadc6 +1967e29e97d2239c8aec7e61fdeca9cecebef54eb36c848517164514af16169e +866444b2b0b7b55534c815cc2ec22d89cd1353800a8473100a4485852d924a6a +412adc74e7ad1016ceed043267238c901716f633a812022998a4072267c4af02 +92127005c0f811b62830054935ce017b38bf0948cc5c09955f030a24617d9d46 +63371fd940b0827931cbfdf4956076ac018b592f72d45594a9b1f307f3261b1a +084bc2ad50018b1900719ba6ba4ca325d0427d3f6161449486f981144cf3100e +2a5f2a1ce8683e4ddf1b64275240c8438d98af0c729bbe07982b8a1c94201dc2 +b3174c9820bcc06201585ad81b25b64a2146384e3798290c05ad280a18c0a62e +e898260c07fca80a24c076cc864b777131a00190cdfa3069035eccbc038c30e1 +3e88b46d16b6acc5380d6ac202511c392f4b789aa7b0b08718765990111606c2 +9e854c38e5191878fbe471e749b0112bb18902008dc473b2b2e8e72700000000 +49454e44ae426082 +"""), + 'Tp2n3p08': _dehex(""" +89504e470d0a1a0a0000000d494844520000002000000020080300000044a48a +c60000000467414d41000186a031e8965f00000300504c544502ffff80ff05ff +7f0703ff7f0180ff04ff00ffff06ff000880ff05ff7f07ffff06ff000804ff00 +0180ff02ffff03ff7f02ffff80ff0503ff7f0180ffff0008ff7f0704ff00ffff +06ff000802ffffff7f0704ff0003ff7fffff0680ff050180ff04ff000180ffff +0008ffff0603ff7f80ff05ff7f0702ffffff000880ff05ffff0603ff7f02ffff +ff7f070180ff04ff00ffff06ff000880ff050180ffff7f0702ffff04ff0003ff +7fff7f0704ff0003ff7f0180ffffff06ff000880ff0502ffffffff0603ff7fff +7f0702ffff04ff000180ff80ff05ff0008ff7f07ffff0680ff0504ff00ff0008 +0180ff03ff7f02ffff02ffffffff0604ff0003ff7f0180ffff000880ff05ff7f +0780ff05ff00080180ff02ffffff7f0703ff7fffff0604ff00ff7f07ff0008ff +ff0680ff0504ff0002ffff0180ff03ff7fff0008ffff0680ff0504ff000180ff +02ffff03ff7fff7f070180ff02ffff04ff00ffff06ff0008ff7f0780ff0503ff +7fffff06ff0008ff7f0780ff0502ffff03ff7f0180ff04ff0002ffffff7f07ff +ff0604ff0003ff7fff00080180ff80ff05ffff0603ff7f0180ffff000804ff00 +80ff0502ffffff7f0780ff05ffff0604ff000180ffff000802ffffff7f0703ff +7fff0008ff7f070180ff03ff7f02ffff80ff05ffff0604ff00ff0008ffff0602 +ffff0180ff04ff0003ff7f80ff05ff7f070180ff04ff00ff7f0780ff0502ffff +ff000803ff7fffff0602ffffff7f07ffff0680ff05ff000804ff0003ff7f0180 +ff02ffff0180ffff7f0703ff7fff000804ff0080ff05ffff0602ffff04ff00ff +ff0603ff7fff7f070180ff80ff05ff000803ff7f0180ffff7f0702ffffff0008 +04ff00ffff0680ff0503ff7f0180ff04ff0080ff05ffff06ff000802ffffff7f +0780ff05ff0008ff7f070180ff03ff7f04ff0002ffffffff0604ff00ff7f07ff +000880ff05ffff060180ff02ffff03ff7f80ff05ffff0602ffff0180ff03ff7f +04ff00ff7f07ff00080180ffff000880ff0502ffff04ff00ff7f0703ff7fffff +06ff0008ffff0604ff00ff7f0780ff0502ffff03ff7f0180ffdeb83387000000 +f874524e53000000000000000008080808080808081010101010101010181818 +1818181818202020202020202029292929292929293131313131313131393939 +393939393941414141414141414a4a4a4a4a4a4a4a52525252525252525a5a5a +5a5a5a5a5a62626262626262626a6a6a6a6a6a6a6a73737373737373737b7b7b +7b7b7b7b7b83838383838383838b8b8b8b8b8b8b8b94949494949494949c9c9c +9c9c9c9c9ca4a4a4a4a4a4a4a4acacacacacacacacb4b4b4b4b4b4b4b4bdbdbd +bdbdbdbdbdc5c5c5c5c5c5c5c5cdcdcdcdcdcdcdcdd5d5d5d5d5d5d5d5dedede +dededededee6e6e6e6e6e6e6e6eeeeeeeeeeeeeeeef6f6f6f6f6f6f6f6b98ac5 +ca0000012c49444154789c6360e7169150d230b475f7098d4ccc28a96ced9e32 +63c1da2d7b8e9fb97af3d1fb8f3f18e8a0808953544a4dd7c4c2c9233c2621bf +b4aab17fdacce5ab36ee3a72eafaad87efbefea68702362e7159652d031b07cf +c0b8a4cce28aa68e89f316aedfb4ffd0b92bf79fbcfcfe931e0a183904e55435 +8decdcbcc22292b3caaadb7b27cc5db67af3be63e72fdf78fce2d31f7a2860e5 +119356d037b374f10e8a4fc92eaa6fee99347fc9caad7b0f9ebd74f7c1db2fbf +e8a180995f484645dbdccad12f38363dafbcb6a573faeca5ebb6ed3e7ce2c29d +e76fbefda38702063e0149751d537b67ff80e8d4dcc29a86bea97316add9b0e3 +c0e96bf79ebdfafc971e0a587885e515f58cad5d7d43a2d2720aeadaba26cf5a +bc62fbcea3272fde7efafac37f3a28000087c0fe101bc2f85f0000000049454e +44ae426082 +"""), + 'tbbn1g04': _dehex(""" +89504e470d0a1a0a0000000d494844520000002000000020040000000093e1c8 +290000000467414d41000186a031e8965f0000000274524e530007e8f7589b00 +000002624b47440000aa8d23320000013e49444154789c55d1cd4b024118c7f1 +efbe6419045b6a48a72d352808b435284f9187ae9b098627a1573a19945beba5 +e8129e8222af11d81e3a4545742de8ef6af6d5762e0fbf0fc33c33f36085cb76 +bc4204778771b867260683ee57e13f0c922df5c719c2b3b6c6c25b2382cea4b9 +9f7d4f244370746ac71f4ca88e0f173a6496749af47de8e44ba8f3bf9bdfa98a +0faf857a7dd95c7dc8d7c67c782c99727997f41eb2e3c1e554152465bb00fe8e +b692d190b718d159f4c0a45c4435915a243c58a7a4312a7a57913f05747594c6 +46169866c57101e4d4ce4d511423119c419183a3530cc63db88559ae28e7342a +1e9c8122b71139b8872d6e913153224bc1f35b60e4445bd4004e20ed6682c759 +1d9873b3da0fbf50137dc5c9bde84fdb2ec8bde1189e0448b63584735993c209 +7a601bd2710caceba6158797285b7f2084a2f82c57c01a0000000049454e44ae +426082 +"""), + 'tbrn2c08': _dehex(""" +89504e470d0a1a0a0000000d4948445200000020000000200802000000fc18ed +a30000000467414d41000186a031e8965f0000000674524e53007f007f007f8a +33334f00000006624b474400ff0000000033277cf3000004d649444154789cad +965f68537714c73fd912d640235e692f34d0406fa0c1663481045ab060065514 +56660a295831607df0a1488715167060840a1614e6431e9cb34fd2c00a762c85 +f6a10f816650c13b0cf40612e1822ddc4863bd628a8924d23d6464f9d3665dd9 +f7e977ce3dbff3cd3939bfdfef6bb87dfb364782dbed065ebe7cd93acc78b4ec +a228debd7bb7bfbfbfbbbbfb7f261045311a8d261209405194274f9ea4d3e916 +f15f1c3eb5dd6e4fa5fecce526239184a2b0b8486f6f617171b1f5ae4311381c +8e57af5e5dbd7a351088150a78bd389d44222c2f93cdfe66b7db8f4ee07038b6 +b6b6bebf766d7e7e7e60a06432313b4ba984c3c1c4049a46b95c5a58583822c1 +dbb76f27272733d1b9df853c3030c0f232562b9108cf9eb1b888d7cbf030abab +31abd5fa1f08dc6ef7e7cf9f1f3f7e1c8944745d4f1400c62c001313acad21cb +b8dd2c2c603271eb1640341aad4c6d331aa7e8c48913a150a861307ecc11e964 +74899919bc5e14e56fffc404f1388502f178dceff7ef4bf0a5cfe7abb533998c +e5f9ea2f1dd88c180d64cb94412df3dd57e83a6b3b3c7a84c98420100c72fd3a +636348bae726379fe69e8e8d8dbd79f3a6558b0607079796965256479b918085 +7b02db12712b6181950233023f3f647494ee6e2e5ea45864cce5b8a7fe3acffc +3aebb22c2bd5d20e22d0757d7b7bbbbdbd3d94a313bed1b0aa3cd069838b163a +8d4c59585f677292d0b84d9a995bd337def3fe6bbe5e6001989b9b6bfe27ea08 +36373781542ab56573248b4c5bc843ac4048c7ab21aa24ca00534c25482828a3 +8c9ee67475bbaaaab22cb722c8e57240a150301a8d219de94e44534d7d90e885 +87acb0e2c4f9800731629b6c5ee14a35a6b9887d2a0032994cb9cf15dbe59650 +ff7b46a04c9a749e7cc5112214266cc65c31354d5b5d5d3d90209bcd5616a552 +a95c2e87f2a659bd9ee01c2cd73964e438f129a6aa9e582c363838b80f81d7eb +5555b56a2a8ad2d9d7affd0409f8015c208013fea00177b873831b0282c964f2 +783c1e8fa7582cee5f81a669b5e6eeeeaee58e8559b0c233d8843c7c0b963a82 +34e94b5cb2396d7d7d7db22c8ba258fb0afd43f0e2c58b919191ba9de9b4d425 +118329b0c3323c8709d02041b52b4ea7f39de75d2a934a2693c0a953a76a93d4 +5d157ebf7f6565a5542a553df97c5e10045dd731c130b86113cc300cbd489224 +08422a952a140a95788fc763b1d41558d7a2d7af5f5fb870a1d6a3aaaacd6603 +18802da84c59015bd2e6897b745d9765b99a1df0f97c0daf74e36deaf7fbcd66 +73ad2797cb89a2c839880188a2e8743a8bc5a22ccbba5e376466b3b9bdbdbd21 +6123413a9d0e0402b51e4dd3bababa788eb022b85caeb6b6364551b6b7b76942 +43f7f727007a7a7a04a1ee8065b3595fde2768423299ac1ec6669c3973e65004 +c0f8f878ad69341a33994ced2969c0d0d0502412f9f8f163f3a7fd654b474787 +288ad53e74757535df6215b85cae60302849d2410aecc037f9f2e5cbd5b5c160 +680eb0dbede170381c0e7ff8f0a185be3b906068684892a4ca7a6f6faff69328 +8ad3d3d3f7efdfdfdbdbfb57e96868a14d0d0643381c96242997cbe5f3794010 +84603078fcf8f1d6496bd14a3aba5c2ea7d369341a5555b5582c8140e0fcf9f3 +1b1b1b87cf4eeb0a8063c78e45a3d19e9e1ebfdfdf5a831e844655d18093274f +9e3d7bf6d3a74f3b3b3b47c80efc05ff7af28fefb70d9b0000000049454e44ae +426082 +"""), + 'basn6a16': _dehex(""" +89504e470d0a1a0a0000000d494844520000002000000020100600000023eaa6 +b70000000467414d41000186a031e8965f00000d2249444154789cdd995f6c1c +d775c67ff38fb34b724d2ee55a8e4b04a0ac87049100cab4dbd8c6528902cb4d +10881620592e52d4325ac0905bc98a94025e71fd622cb5065ac98a0c283050c0 +728a00b6e542a1d126885cd3298928891d9a0444037e904434951d4b90b84b2f +c9dde1fcebc33977a95555348f411e16dfce9d3b77ee77eebde77ce78c95a669 +0ad07c17009a13edd898b87dfb1fcb7d2b4d1bff217f33df80deb1e6267df0ff +c1e6e6dfafdf1f5a7fd30f9aef66b6d546dd355bf02c40662e3307f9725a96c6 +744c3031f83782f171c148dbc3bf1774f5dad1e79d6f095a3f54d4fbec5234ef +d9a2f8d73afe4f14f57ef4f42def7b44f19060f06b45bddf1c5534d77fd922be +2973a15a82e648661c6e3240aa3612ead952b604bde57458894f29deaf133bac +13d2766f5227a4a3b8cf08da7adfd6fbd6bd8a4fe9dbb43d35e3dfa3f844fbf8 +9119bf4f7144094fb56333abf8a86063ca106f94b3a3b512343765e60082097f +1bb86ba72439a653519b09f5cee1ce61c897d37eedf5553580ae60f4af8af33a +b14fd400b6a0f34535c0434afc0b3a9f07147527a5fa7ca218ff56c74d74dc3f +155cfd3325fc278acf2ae1cb4a539f5f9937c457263b0bd51234c732a300cdd1 +cc1840f0aaff54db0e4874ed5a9b5d6d27d4bb36746d80de72baa877ff4b275a +d7895ed1897ea4139b5143fcbb1a62560da1ed9662aaed895ec78a91c18795b8 +5e07ab4af8ba128e95e682e0728bf8f2e5ae815a091a53d902ac1920d8e05f06 +589de8d8d66680789f4e454fb9d9ec66cd857af796ee2d902fa73fd5bba775a2 +153580ae44705ed0d37647d15697cb8f14bfa3e3e8fdf8031d47af571503357c +f30d25acedcbbf135c9a35c49766ba07ab255859e8ec03684e66860182dff8f7 +0304bff6ff1c20fc81b7afdd00a71475539a536e36bb5973a19e3b923b02bde5 +e4efd4003ac170eb2d13fe274157afedbd82d6fb3a9a1e85e4551d47cf7078f8 +9671fe4289ebf5f2bf08d63f37c4eb4773c55a0996efeefa0ca011671d8060ca +2f0004c7fcc300e166ef0240f825efe3361f106d57d423d0723f7acacd66376b +2ed47b7a7a7a205f4ef4ac4691e0aad9aa0d41cf13741c3580a506487574ddca +61a8c403c1863ebfbcac3475168b2de28b8b3d77544bb05ce92a02aceced3c0d +d0cc65ea371b201cf1c601c24dde1c4078cedbdeb60322f50126a019bf6edc9b +39e566b39b3517eaf97c3e0fbde5e4491d45bd74537145d155b476aa0176e868 +c6abebf30dbd5e525c54ac8e18e2d56abeb756827a3d970358a97416019a6f64 +f60004fdfe1580d5c98e618070cc1b05887eee7e0d209a70db7d8063029889b4 +c620ead78d7b33a7dc6c76b3e6427ddddbebde867c393aa7845e5403e8ca794a +d0d6fb897af5f03525fe5782f5e7046bdaef468bf88d1debc6ab25583cd17310 +6079b9ab0ba059c914018245bf076075b5a303200c3c1f209a733701444fbbaf +00c4134ebb016c5d0b23614c243701cdf875e3decce9349bddacb9505fbf7dfd +76e82d87736a00f5d2b5ffd4b7dce2719a4d25ae717ee153c1abef18e257cfad +7fa45682da48ef38c052b53b0fd06864b300c151ff08c0ea431de701a287dd5f +004497dc7b01a253ee3e80b8c7f91c20f967fb6fdb7c80ada7d8683723614c24 +3701cdf875e3decc29379bddacb950ef3fd47f08f2e5a61ea4aa2a3eb757cd55 +13345efcfa59c12b2f19e2578ef77fb75a82854ffbee01a83f977b11a031931d +040802df07082b5e11207cc17b1e209a770700e2df0a83e409fb7580f827c230 +99b06fd901fb058d6835dacd481813c94d40337eddb83773cacd66376b2ed437 +bebcf165e82d2f4e4beb7f3fa6e652c2d7ee10bc78c010bfb87fe3c95a09ae9f +bd732740bd2fb700d0f865f64180e059ff044018ca0ca28a5b04883f701e0088 +bfec7c0c909cb71f0448c6ec518074b375012079d9dedf66004bcfbc51eb2dd1 +aadacd481813c94d40337eddb83773cacd66376b2ed487868686205fbe7c49ef +5605a73f34c4a7a787eeab96e0da81bb4e022c15ba27019a5b339300e16bf286 +a8eae601e25866907cdf3e0890acb36f00245fb57f05904e59c300e92561946e +b2e600d209ab7d07f04d458dfb46ad1bd16ab49b913026929b8066fcba716fe6 +949bcd6ed65ca8ef7e7cf7e3d05b7e7c8f217ee6cdddbb6a25a856f37980e0c7 +fe4e80a82623c48193014846ec7180f4acf518409aca0cd28a5504e03b32c374 +de1a00608a0240faaa327a4b19fe946fb6f90054dbb5f2333d022db56eb4966a +3723614c243701cdf8f556bea8a7dc6c76b3e66bd46584ddbbcebc0990cf4b0f +ff4070520c282338a7e26700ec725202b01e4bcf0258963c6f1d4d8f0030cb20 +805549c520930c03584fa522b676f11600ffc03fde3e1b3489a9c9054c9aa23b +c08856a3dd8c843191dc0434e3d78d7b33a75c36fb993761f7ae5a69f72ef97f +e6ad336fed7e1c60e8bee96980bbdebbb60da07b7069062033d9dc0ae03d296f +70ab511ec071640676252902d833c916007b3e1900b0a6d2028035968e025861 +ea01581369fb11488c34d18cbc95989afccca42baad65ba2d5683723614c24d7 +8066fcbab8b7e96918baaf5aaa56219f975fb50a43f7c9bde90fa73f1c1a02d8 +78f2e27e803b77ca08b90519315b6fe400fc1392097a9eccc0ad444500e70199 +a1331f0f00d8934901c07e5d526ceb87c2d07e2579badd005a2b31a5089391b7 +1253358049535a6add8856dd0146c298482e01ede27ed878b256ba7600ee3a09 +c18fc1df09fe01084ec25defc1b56db0f1a4f4bd78e0e2818d2f0334e7330300 +7df7c888b917e50dd9c1c60c80efcb0cbc63e1f700bce7c31700dccbd1060027 +8add9b0de06c8e2f00d84962b7d7030e2a61538331b98051f92631bd253f336a +dd8856a3dd44c25c390efddfad96ae9f853b77c25201ba27c533b8bdf28b6ad0 +3d084b33d2e7fa59099e9901b8f2d29597fa0f01848f78e70082117f1ca07b76 +6910209b9519f895a008d031bbba05c09d8f06005c5b18b8fba25300cea6780e +c03e911c6ccf06d507b48a4fa606634a114609de929f9934c5a87511ad57cfc1 +fa476aa5854fa1ef1e3910b905686e85cc24c40138198915f133d2d6dc2a7dea +7df2ccc2a752faf2cec1d577aebeb37e3b4034eeee0008dff3be0e6b923773b4 +7904c0ef9119767cb4fa1500ef1361e08e452500f71561e84cc4ed3e20fab6a2 +c905f40cb76a3026bf3319b91ac2e46792a6dcd801ebc6aba5da08f48ecb81c8 +bd088d5f42f6417191de93908c803d0e76199292b485af41b60e8d9c3c537f0e +8211f0c7211a077707dc18b931b2ee6d80a4d7ae024491ebc24d4a708ff70680 +7f25e807e8785f1878e322d6ddaf453f0770ff2dfa769b01423dbbad72a391b6 +5a7c3235985629423372494cab55c8f7d64a8b27a0e7202c55a13b0f8d19c80e +4ae9ca3f015115dc3ca467c17a4c7ee95970ab10e5a54ff0ac3cd39881ee5958 +1a84f03df0be0e492fd855a8d6aa35d10b4962dbb0a604a3d3ee5e80a8eee600 +a24977f8660378bf0bbf00e01d0a8fb7f980f04b8aa6ce6aca8d5a7533c52753 +839152c4e222f4dc512dd5eb90cbc981e8ea12cf90cd8a8bf47d89159e2741d3 +7124f65b96fcd254dae258fa84a13c13043246a32129574787e49eae2b49b86d +c3e2e78b9ff7f4002415bb08907c66df0d103b4e0c104db90500ff70700c203a +ee1e82dba4c3e16e256c0acca6ceaae9afd1f612d7eb472157ac95962bd05594 +7dd1598466053245088e827f44628657942a825b84e4fb601f84b4025611aca3 +901e01bb024911dc0a4445f08e41f83df02b10142173149ab71baf027611ea95 +7a257704201d14cd9af4d90b00f194530088cb4e09c0df1c5c0088f7393f6833 +c0aa3ac156655de3bca9b34ab9716906ba07aba5e5bba1eb3358d90b9da7c533 +64f6888bf47b60f521e8380fe10be03d2feac17900927560df40f4e48f805960 +50328d648bf4893f9067c217a0631656b7c898c122847bc07b03a2d3e0ee85e4 +33b0ef867450c4fad2ecd26cf7168074c0ba0c904cdac300c9cfec4701924df6 +1cdca61e10685c6f7d52d0caba1498972f43d740adb4b2009d7d7220b20e3473 +90a943d00ffe959bb6eac3e0fe42ea49ee00c45f06e76329b1dabf127d690d80 +5581b408f63c2403e0cc433c00ee658836803b0fd100747c04ab5f917704fd10 +d5c1cd41ec801343d207f602a403605d86e5f9e5f9ae0d00e994556833806685 +c931fb709b0f08b4e869bea5c827859549e82c544b8d29c816a0390999613920 +7e610d5727a16318c2003c1fa24be0de2b32caf92224e7c17e5004b6350c4c01 +05601218066b0ad28224e149019c086257ca315102de2712903bde97b8144d82 +3b2c6ac52d403c054e019249b087f53d0558995a99ea946c70cc927458b3c1ff +550f30050df988d4284376b4566a8e416654cc921985e037e0df0fc131f00f4b +acf0c6211c036f14a239703741740adc7da227edd7e56b833d0ae92549b4d357 +25dfb49ed2ff63908e6adf27d6d0dda7638d4154d2778daca17f58e61297c129 +41f233b01f5dc3740cac51688c35c6b22580f48224fee9b83502569a66b629f1 +09f3713473413e2666e7fe6f6c6efefdfafda1f56f6e06f93496d9d67cb7366a +9964b6f92e64b689196ec6c604646fd3fe4771ff1bf03f65d8ecc3addbb5f300 +00000049454e44ae426082 +"""), +} + +def test_suite(options, args): + """ + Create a PNG test image and write the file to stdout. + """ + + # Below is a big stack of test image generators. + # They're all really tiny, so PEP 8 rules are suspended. + + def test_gradient_horizontal_lr(x, y): return x + def test_gradient_horizontal_rl(x, y): return 1-x + def test_gradient_vertical_tb(x, y): return y + def test_gradient_vertical_bt(x, y): return 1-y + def test_radial_tl(x, y): return max(1-math.sqrt(x*x+y*y), 0.0) + def test_radial_center(x, y): return test_radial_tl(x-0.5, y-0.5) + def test_radial_tr(x, y): return test_radial_tl(1-x, y) + def test_radial_bl(x, y): return test_radial_tl(x, 1-y) + def test_radial_br(x, y): return test_radial_tl(1-x, 1-y) + def test_stripe(x, n): return float(int(x*n) & 1) + def test_stripe_h_2(x, y): return test_stripe(x, 2) + def test_stripe_h_4(x, y): return test_stripe(x, 4) + def test_stripe_h_10(x, y): return test_stripe(x, 10) + def test_stripe_v_2(x, y): return test_stripe(y, 2) + def test_stripe_v_4(x, y): return test_stripe(y, 4) + def test_stripe_v_10(x, y): return test_stripe(y, 10) + def test_stripe_lr_10(x, y): return test_stripe(x+y, 10) + def test_stripe_rl_10(x, y): return test_stripe(1+x-y, 10) + def test_checker(x, y, n): return float((int(x*n) & 1) ^ (int(y*n) & 1)) + def test_checker_8(x, y): return test_checker(x, y, 8) + def test_checker_15(x, y): return test_checker(x, y, 15) + def test_zero(x, y): return 0 + def test_one(x, y): return 1 + + test_patterns = { + 'GLR': test_gradient_horizontal_lr, + 'GRL': test_gradient_horizontal_rl, + 'GTB': test_gradient_vertical_tb, + 'GBT': test_gradient_vertical_bt, + 'RTL': test_radial_tl, + 'RTR': test_radial_tr, + 'RBL': test_radial_bl, + 'RBR': test_radial_br, + 'RCTR': test_radial_center, + 'HS2': test_stripe_h_2, + 'HS4': test_stripe_h_4, + 'HS10': test_stripe_h_10, + 'VS2': test_stripe_v_2, + 'VS4': test_stripe_v_4, + 'VS10': test_stripe_v_10, + 'LRS': test_stripe_lr_10, + 'RLS': test_stripe_rl_10, + 'CK8': test_checker_8, + 'CK15': test_checker_15, + 'ZERO': test_zero, + 'ONE': test_one, + } + + def test_pattern(width, height, bitdepth, pattern): + """Create a single plane (monochrome) test pattern. Returns a + flat row flat pixel array. + """ + + maxval = 2**bitdepth-1 + if maxval > 255: + a = array('H') + else: + a = array('B') + fw = float(width) + fh = float(height) + pfun = test_patterns[pattern] + for y in range(height): + fy = float(y)/fh + for x in range(width): + a.append(int(round(pfun(float(x)/fw, fy) * maxval))) + return a + + def test_rgba(size=256, bitdepth=8, + red="GTB", green="GLR", blue="RTL", alpha=None): + """ + Create a test image. Each channel is generated from the + specified pattern; any channel apart from red can be set to + None, which will cause it not to be in the image. It + is possible to create all PNG channel types (L, RGB, LA, RGBA), + as well as non PNG channel types (RGA, and so on). + """ + + i = test_pattern(size, size, bitdepth, red) + psize = 1 + for channel in (green, blue, alpha): + if channel: + c = test_pattern(size, size, bitdepth, channel) + i = interleave_planes(i, c, psize, 1) + psize += 1 + return i + + def pngsuite_image(name): + """ + Create a test image by reading an internal copy of the files + from the PngSuite. Returned in flat row flat pixel format. + """ + + if name not in _pngsuite: + raise NotImplementedError("cannot find PngSuite file %s (use -L for a list)" % name) + r = Reader(bytes=_pngsuite[name]) + w,h,pixels,meta = r.asDirect() + assert w == h + # LAn for n < 8 is a special case for which we need to rescale + # the data. + if meta['greyscale'] and meta['alpha'] and meta['bitdepth'] < 8: + factor = 255 // (2**meta['bitdepth']-1) + def rescale(data): + for row in data: + yield map(factor.__mul__, row) + pixels = rescale(pixels) + meta['bitdepth'] = 8 + arraycode = 'BH'[meta['bitdepth']>8] + return w, array(arraycode, itertools.chain(*pixels)), meta + + # The body of test_suite() + size = 256 + if options.test_size: + size = options.test_size + options.bitdepth = options.test_depth + options.greyscale=bool(options.test_black) + + kwargs = {} + if options.test_red: + kwargs["red"] = options.test_red + if options.test_green: + kwargs["green"] = options.test_green + if options.test_blue: + kwargs["blue"] = options.test_blue + if options.test_alpha: + kwargs["alpha"] = options.test_alpha + if options.greyscale: + if options.test_red or options.test_green or options.test_blue: + raise ValueError("cannot specify colours (R, G, B) when greyscale image (black channel, K) is specified") + kwargs["red"] = options.test_black + kwargs["green"] = None + kwargs["blue"] = None + options.alpha = bool(options.test_alpha) + if not args: + pixels = test_rgba(size, options.bitdepth, **kwargs) + else: + size,pixels,meta = pngsuite_image(args[0]) + for k in ['bitdepth', 'alpha', 'greyscale']: + setattr(options, k, meta[k]) + + writer = Writer(size, size, + bitdepth=options.bitdepth, + transparent=options.transparent, + background=options.background, + gamma=options.gamma, + greyscale=options.greyscale, + alpha=options.alpha, + compression=options.compression, + interlace=options.interlace) + writer.write_array(sys.stdout, pixels) + +def read_pam_header(infile): + """ + Read (the rest of a) PAM header. `infile` should be positioned + immediately after the initial 'P7' line (at the beginning of the + second line). Returns are as for `read_pnm_header`. + """ + + # Unlike PBM, PGM, and PPM, we can read the header a line at a time. + header = dict() + while True: + l = infile.readline().strip() + if l == strtobytes('ENDHDR'): + break + if not l: + raise EOFError('PAM ended prematurely') + if l[0] == strtobytes('#'): + continue + l = l.split(None, 1) + if l[0] not in header: + header[l[0]] = l[1] + else: + header[l[0]] += strtobytes(' ') + l[1] + + required = ['WIDTH', 'HEIGHT', 'DEPTH', 'MAXVAL'] + required = [strtobytes(x) for x in required] + WIDTH,HEIGHT,DEPTH,MAXVAL = required + present = [x for x in required if x in header] + if len(present) != len(required): + raise Error('PAM file must specify WIDTH, HEIGHT, DEPTH, and MAXVAL') + width = int(header[WIDTH]) + height = int(header[HEIGHT]) + depth = int(header[DEPTH]) + maxval = int(header[MAXVAL]) + if (width <= 0 or + height <= 0 or + depth <= 0 or + maxval <= 0): + raise Error( + 'WIDTH, HEIGHT, DEPTH, MAXVAL must all be positive integers') + return 'P7', width, height, depth, maxval + +def read_pnm_header(infile, supported=('P5','P6')): + """ + Read a PNM header, returning (format,width,height,depth,maxval). + `width` and `height` are in pixels. `depth` is the number of + channels in the image; for PBM and PGM it is synthesized as 1, for + PPM as 3; for PAM images it is read from the header. `maxval` is + synthesized (as 1) for PBM images. + """ + + # Generally, see http://netpbm.sourceforge.net/doc/ppm.html + # and http://netpbm.sourceforge.net/doc/pam.html + + supported = [strtobytes(x) for x in supported] + + # Technically 'P7' must be followed by a newline, so by using + # rstrip() we are being liberal in what we accept. I think this + # is acceptable. + type = infile.read(3).rstrip() + if type not in supported: + raise NotImplementedError('file format %s not supported' % type) + if type == strtobytes('P7'): + # PAM header parsing is completely different. + return read_pam_header(infile) + # Expected number of tokens in header (3 for P4, 4 for P6) + expected = 4 + pbm = ('P1', 'P4') + if type in pbm: + expected = 3 + header = [type] + + # We have to read the rest of the header byte by byte because the + # final whitespace character (immediately following the MAXVAL in + # the case of P6) may not be a newline. Of course all PNM files in + # the wild use a newline at this point, so it's tempting to use + # readline; but it would be wrong. + def getc(): + c = infile.read(1) + if not c: + raise Error('premature EOF reading PNM header') + return c + + c = getc() + while True: + # Skip whitespace that precedes a token. + while c.isspace(): + c = getc() + # Skip comments. + while c == '#': + while c not in '\n\r': + c = getc() + if not c.isdigit(): + raise Error('unexpected character %s found in header' % c) + # According to the specification it is legal to have comments + # that appear in the middle of a token. + # This is bonkers; I've never seen it; and it's a bit awkward to + # code good lexers in Python (no goto). So we break on such + # cases. + token = strtobytes('') + while c.isdigit(): + token += c + c = getc() + # Slight hack. All "tokens" are decimal integers, so convert + # them here. + header.append(int(token)) + if len(header) == expected: + break + # Skip comments (again) + while c == '#': + while c not in '\n\r': + c = getc() + if not c.isspace(): + raise Error('expected header to end with whitespace, not %s' % c) + + if type in pbm: + # synthesize a MAXVAL + header.append(1) + depth = (1,3)[type == strtobytes('P6')] + return header[0], header[1], header[2], depth, header[3] + +def write_pnm(file, width, height, pixels, meta): + """Write a Netpbm PNM/PAM file.""" + + bitdepth = meta['bitdepth'] + maxval = 2**bitdepth - 1 + # Rudely, the number of image planes can be used to determine + # whether we are L (PGM), LA (PAM), RGB (PPM), or RGBA (PAM). + planes = meta['planes'] + # Can be an assert as long as we assume that pixels and meta came + # from a PNG file. + assert planes in (1,2,3,4) + if planes in (1,3): + if 1 == planes: + # PGM + # Could generate PBM if maxval is 1, but we don't (for one + # thing, we'd have to convert the data, not just blat it + # out). + fmt = 'P5' + else: + # PPM + fmt = 'P6' + file.write('%s %d %d %d\n' % (fmt, width, height, maxval)) + if planes in (2,4): + # PAM + # See http://netpbm.sourceforge.net/doc/pam.html + if 2 == planes: + tupltype = 'GRAYSCALE_ALPHA' + else: + tupltype = 'RGB_ALPHA' + file.write('P7\nWIDTH %d\nHEIGHT %d\nDEPTH %d\nMAXVAL %d\n' + 'TUPLTYPE %s\nENDHDR\n' % + (width, height, planes, maxval, tupltype)) + # Values per row + vpr = planes * width + # struct format + fmt = '>%d' % vpr + if maxval > 0xff: + fmt = fmt + 'H' + else: + fmt = fmt + 'B' + for row in pixels: + file.write(struct.pack(fmt, *row)) + file.flush() + +def color_triple(color): + """ + Convert a command line colour value to a RGB triple of integers. + FIXME: Somewhere we need support for greyscale backgrounds etc. + """ + if color.startswith('#') and len(color) == 4: + return (int(color[1], 16), + int(color[2], 16), + int(color[3], 16)) + if color.startswith('#') and len(color) == 7: + return (int(color[1:3], 16), + int(color[3:5], 16), + int(color[5:7], 16)) + elif color.startswith('#') and len(color) == 13: + return (int(color[1:5], 16), + int(color[5:9], 16), + int(color[9:13], 16)) + + +def _main(argv): + """ + Run the PNG encoder with options from the command line. + """ + + # Parse command line arguments + from optparse import OptionParser + import re + version = '%prog ' + re.sub(r'( ?\$|URL: |Rev:)', '', __version__) + parser = OptionParser(version=version) + parser.set_usage("%prog [options] [imagefile]") + parser.add_option('-r', '--read-png', default=False, + action='store_true', + help='Read PNG, write PNM') + parser.add_option("-i", "--interlace", + default=False, action="store_true", + help="create an interlaced PNG file (Adam7)") + parser.add_option("-t", "--transparent", + action="store", type="string", metavar="color", + help="mark the specified colour (#RRGGBB) as transparent") + parser.add_option("-b", "--background", + action="store", type="string", metavar="color", + help="save the specified background colour") + parser.add_option("-a", "--alpha", + action="store", type="string", metavar="pgmfile", + help="alpha channel transparency (RGBA)") + parser.add_option("-g", "--gamma", + action="store", type="float", metavar="value", + help="save the specified gamma value") + parser.add_option("-c", "--compression", + action="store", type="int", metavar="level", + help="zlib compression level (0-9)") + parser.add_option("-T", "--test", + default=False, action="store_true", + help="create a test image (a named PngSuite image if an argument is supplied)") + parser.add_option('-L', '--list', + default=False, action='store_true', + help="print list of named test images") + parser.add_option("-R", "--test-red", + action="store", type="string", metavar="pattern", + help="test pattern for the red image layer") + parser.add_option("-G", "--test-green", + action="store", type="string", metavar="pattern", + help="test pattern for the green image layer") + parser.add_option("-B", "--test-blue", + action="store", type="string", metavar="pattern", + help="test pattern for the blue image layer") + parser.add_option("-A", "--test-alpha", + action="store", type="string", metavar="pattern", + help="test pattern for the alpha image layer") + parser.add_option("-K", "--test-black", + action="store", type="string", metavar="pattern", + help="test pattern for greyscale image") + parser.add_option("-d", "--test-depth", + default=8, action="store", type="int", + metavar='NBITS', + help="create test PNGs that are NBITS bits per channel") + parser.add_option("-S", "--test-size", + action="store", type="int", metavar="size", + help="width and height of the test image") + (options, args) = parser.parse_args(args=argv[1:]) + + # Convert options + if options.transparent is not None: + options.transparent = color_triple(options.transparent) + if options.background is not None: + options.background = color_triple(options.background) + + if options.list: + names = list(_pngsuite) + names.sort() + for name in names: + print name + return + + # Run regression tests + if options.test: + return test_suite(options, args) + + # Prepare input and output files + if len(args) == 0: + infilename = '-' + infile = sys.stdin + elif len(args) == 1: + infilename = args[0] + infile = open(infilename, 'rb') + else: + parser.error("more than one input file") + outfile = sys.stdout + + if options.read_png: + # Encode PNG to PPM + png = Reader(file=infile) + width,height,pixels,meta = png.asDirect() + write_pnm(outfile, width, height, pixels, meta) + else: + # Encode PNM to PNG + format, width, height, depth, maxval = \ + read_pnm_header(infile, ('P5','P6','P7')) + # When it comes to the variety of input formats, we do something + # rather rude. Observe that L, LA, RGB, RGBA are the 4 colour + # types supported by PNG and that they correspond to 1, 2, 3, 4 + # channels respectively. So we use the number of channels in + # the source image to determine which one we have. We do not + # care about TUPLTYPE. + greyscale = depth <= 2 + pamalpha = depth in (2,4) + supported = map(lambda x: 2**x-1, range(1,17)) + try: + mi = supported.index(maxval) + except ValueError: + raise NotImplementedError( + 'your maxval (%s) not in supported list %s' % + (maxval, str(supported))) + bitdepth = mi+1 + writer = Writer(width, height, + greyscale=greyscale, + bitdepth=bitdepth, + interlace=options.interlace, + transparent=options.transparent, + background=options.background, + alpha=bool(pamalpha or options.alpha), + gamma=options.gamma, + compression=options.compression) + if options.alpha: + pgmfile = open(options.alpha, 'rb') + format, awidth, aheight, adepth, amaxval = \ + read_pnm_header(pgmfile, 'P5') + if amaxval != '255': + raise NotImplementedError( + 'maxval %s not supported for alpha channel' % amaxval) + if (awidth, aheight) != (width, height): + raise ValueError("alpha channel image size mismatch" + " (%s has %sx%s but %s has %sx%s)" + % (infilename, width, height, + options.alpha, awidth, aheight)) + writer.convert_ppm_and_pgm(infile, pgmfile, outfile) + else: + writer.convert_pnm(infile, outfile) + + +if __name__ == '__main__': + try: + _main(sys.argv) + except Error, e: + print >>sys.stderr, e -- cgit v0.9.1