# -*- coding: utf-8 -*- # # Copyright (C) 2006-2009 Edgewall Software # All rights reserved. # # This software is licensed as described in the file COPYING, which # you should have received as part of this distribution. The terms # are also available at http://genshi.edgewall.org/wiki/License. # # This software consists of voluntary contributions made by many # individuals. For the exact contribution history, see the revision # history and logs, available at http://genshi.edgewall.org/log/. """Basic support for evaluating XPath expressions against streams. >>> from genshi.input import XML >>> doc = XML(''' ... ... ... Foo ... ... ... Bar ... ... ... Baz ... ... ... Waz ... ... ... ''') >>> print(doc.select('items/item[@status="closed" and ' ... '(@resolution="invalid" or not(@resolution))]/summary/text()')) BarBaz Because the XPath engine operates on markup streams (as opposed to tree structures), it only implements a subset of the full XPath 1.0 language. """ from collections import deque try: reduce # builtin in Python < 3 except NameError: from functools import reduce from math import ceil, floor import operator import re from itertools import chain from genshi.core import Stream, Attrs, Namespace, QName from genshi.core import START, END, TEXT, START_NS, END_NS, COMMENT, PI, \ START_CDATA, END_CDATA __all__ = ['Path', 'PathSyntaxError'] __docformat__ = 'restructuredtext en' class Axis(object): """Defines constants for the various supported XPath axes.""" ATTRIBUTE = 'attribute' CHILD = 'child' DESCENDANT = 'descendant' DESCENDANT_OR_SELF = 'descendant-or-self' SELF = 'self' @classmethod def forname(cls, name): """Return the axis constant for the given name, or `None` if no such axis was defined. """ return getattr(cls, name.upper().replace('-', '_'), None) ATTRIBUTE = Axis.ATTRIBUTE CHILD = Axis.CHILD DESCENDANT = Axis.DESCENDANT DESCENDANT_OR_SELF = Axis.DESCENDANT_OR_SELF SELF = Axis.SELF class GenericStrategy(object): @classmethod def supports(cls, path): return True def __init__(self, path): self.path = path def test(self, ignore_context): p = self.path if ignore_context: if p[0][0] is ATTRIBUTE: steps = [_DOTSLASHSLASH] + p else: steps = [(DESCENDANT_OR_SELF, p[0][1], p[0][2])] + p[1:] elif p[0][0] is CHILD or p[0][0] is ATTRIBUTE \ or p[0][0] is DESCENDANT: steps = [_DOTSLASH] + p else: steps = p # for node it contains all positions of xpath expression # where its child should start checking for matches # with list of corresponding context counters # there can be many of them, because position that is from # descendant-like axis can be achieved from different nodes # for example should match both //a//b[1] # and //a//b[2] # positions always form increasing sequence (invariant) stack = [[(0, [[]])]] def _test(event, namespaces, variables, updateonly=False): kind, data, pos = event[:3] retval = None # Manage the stack that tells us "where we are" in the stream if kind is END: if stack: stack.pop() return None if kind is START_NS or kind is END_NS \ or kind is START_CDATA or kind is END_CDATA: # should we make namespaces work? return None pos_queue = deque([(pos, cou, []) for pos, cou in stack[-1]]) next_pos = [] # length of real part of path - we omit attribute axis real_len = len(steps) - ((steps[-1][0] == ATTRIBUTE) or 1 and 0) last_checked = -1 # places where we have to check for match, are these # provided by parent while pos_queue: x, pcou, mcou = pos_queue.popleft() axis, nodetest, predicates = steps[x] # we need to push descendant-like positions from parent # further if (axis is DESCENDANT or axis is DESCENDANT_OR_SELF) and pcou: if next_pos and next_pos[-1][0] == x: next_pos[-1][1].extend(pcou) else: next_pos.append((x, pcou)) # nodetest first if not nodetest(kind, data, pos, namespaces, variables): continue # counters packs that were already bad missed = set() counters_len = len(pcou) + len(mcou) # number of counters - we have to create one # for every context position based predicate cnum = 0 # tells if we have match with position x matched = True if predicates: for predicate in predicates: pretval = predicate(kind, data, pos, namespaces, variables) if type(pretval) is float: # FIXME <- need to check # this for other types that # can be coerced to float # each counter pack needs to be checked for i, cou in enumerate(chain(pcou, mcou)): # it was bad before if i in missed: continue if len(cou) < cnum + 1: cou.append(0) cou[cnum] += 1 # it is bad now if cou[cnum] != int(pretval): missed.add(i) # none of counters pack was good if len(missed) == counters_len: pretval = False cnum += 1 if not pretval: matched = False break if not matched: continue # counter for next position with current node as context node child_counter = [] if x + 1 == real_len: # we reached end of expression, because x + 1 # is equal to the length of expression matched = True axis, nodetest, predicates = steps[-1] if axis is ATTRIBUTE: matched = nodetest(kind, data, pos, namespaces, variables) if matched: retval = matched else: next_axis = steps[x + 1][0] # if next axis allows matching self we have # to add next position to our queue if next_axis is DESCENDANT_OR_SELF or next_axis is SELF: if not pos_queue or pos_queue[0][0] > x + 1: pos_queue.appendleft((x + 1, [], [child_counter])) else: pos_queue[0][2].append(child_counter) # if axis is not self we have to add it to child's list if next_axis is not SELF: next_pos.append((x + 1, [child_counter])) if kind is START: stack.append(next_pos) return retval return _test class SimplePathStrategy(object): """Strategy for path with only local names, attributes and text nodes.""" @classmethod def supports(cls, path): if path[0][0] is ATTRIBUTE: return False allowed_tests = (LocalNameTest, CommentNodeTest, TextNodeTest) for _, nodetest, predicates in path: if predicates: return False if not isinstance(nodetest, allowed_tests): return False return True def __init__(self, path): # fragments is list of tuples (fragment, pi, attr, self_beginning) # fragment is list of nodetests for fragment of path with only # child:: axes between # pi is KMP partial match table for this fragment # attr is attribute nodetest if fragment ends with @ and None otherwise # self_beginning is True if axis for first fragment element # was self (first fragment) or descendant-or-self (farther fragment) self.fragments = [] self_beginning = False fragment = [] def nodes_equal(node1, node2): """Tests if two node tests are equal""" if type(node1) is not type(node2): return False if type(node1) == LocalNameTest: return node1.name == node2.name return True def calculate_pi(f): """KMP prefix calculation for table""" # the indexes in prefix table are shifted by one # in comparision with common implementations # pi[i] = NORMAL_PI[i + 1] if len(f) == 0: return [] pi = [0] s = 0 for i in range(1, len(f)): while s > 0 and not nodes_equal(f[s], f[i]): s = pi[s-1] if nodes_equal(f[s], f[i]): s += 1 pi.append(s) return pi for axis in path: if axis[0] is SELF: if len(fragment) != 0: # if element is not first in fragment it has to be # the same as previous one # for example child::a/self::b is always wrong if axis[1] != fragment[-1][1]: self.fragments = None return else: self_beginning = True fragment.append(axis[1]) elif axis[0] is CHILD: fragment.append(axis[1]) elif axis[0] is ATTRIBUTE: pi = calculate_pi(fragment) self.fragments.append((fragment, pi, axis[1], self_beginning)) # attribute has always to be at the end, so we can jump out return else: pi = calculate_pi(fragment) self.fragments.append((fragment, pi, None, self_beginning)) fragment = [axis[1]] if axis[0] is DESCENDANT: self_beginning = False else: # DESCENDANT_OR_SELF self_beginning = True pi = calculate_pi(fragment) self.fragments.append((fragment, pi, None, self_beginning)) def test(self, ignore_context): # stack of triples (fid, p, ic) # fid is index of current fragment # p is position in this fragment # ic is if we ignore context in this fragment stack = [] stack_push = stack.append stack_pop = stack.pop frags = self.fragments frags_len = len(frags) def _test(event, namespaces, variables, updateonly=False): # expression found impossible during init if frags is None: return None kind, data, pos = event[:3] # skip events we don't care about if kind is END: if stack: stack_pop() return None if kind is START_NS or kind is END_NS \ or kind is START_CDATA or kind is END_CDATA: return None if not stack: # root node, nothing on stack, special case fid = 0 # skip empty fragments (there can be actually only one) while not frags[fid][0]: fid += 1 p = 0 # empty fragment means descendant node at beginning ic = ignore_context or (fid > 0) # expression can match first node, if first axis is self::, # descendant-or-self:: or if ignore_context is True and # axis is not descendant:: if not frags[fid][3] and (not ignore_context or fid > 0): # axis is not self-beggining, we have to skip this node stack_push((fid, p, ic)) return None else: # take position of parent fid, p, ic = stack[-1] if fid is not None and not ic: # fragment not ignoring context - we can't jump back frag, pi, attrib, _ = frags[fid] frag_len = len(frag) if p == frag_len: # that probably means empty first fragment pass elif frag[p](kind, data, pos, namespaces, variables): # match, so we can go further p += 1 else: # not matched, so there will be no match in subtree fid, p = None, None if p == frag_len and fid + 1 != frags_len: # we made it to end of fragment, we can go to following fid += 1 p = 0 ic = True if fid is None: # there was no match in fragment not ignoring context if kind is START: stack_push((fid, p, ic)) return None if ic: # we are in fragment ignoring context while True: frag, pi, attrib, _ = frags[fid] frag_len = len(frag) # KMP new "character" while p > 0 and (p >= frag_len or not \ frag[p](kind, data, pos, namespaces, variables)): p = pi[p-1] if frag[p](kind, data, pos, namespaces, variables): p += 1 if p == frag_len: # end of fragment reached if fid + 1 == frags_len: # that was last fragment break else: fid += 1 p = 0 ic = True if not frags[fid][3]: # next fragment not self-beginning break else: break if kind is START: # we have to put new position on stack, for children if not ic and fid + 1 == frags_len and p == frag_len: # it is end of the only, not context ignoring fragment # so there will be no matches in subtree stack_push((None, None, ic)) else: stack_push((fid, p, ic)) # have we reached the end of the last fragment? if fid + 1 == frags_len and p == frag_len: if attrib: # attribute ended path, return value return attrib(kind, data, pos, namespaces, variables) return True return None return _test class SingleStepStrategy(object): @classmethod def supports(cls, path): return len(path) == 1 def __init__(self, path): self.path = path def test(self, ignore_context): steps = self.path if steps[0][0] is ATTRIBUTE: steps = [_DOTSLASH] + steps select_attr = steps[-1][0] is ATTRIBUTE and steps[-1][1] or None # for every position in expression stores counters' list # it is used for position based predicates counters = [] depth = [0] def _test(event, namespaces, variables, updateonly=False): kind, data, pos = event[:3] # Manage the stack that tells us "where we are" in the stream if kind is END: if not ignore_context: depth[0] -= 1 return None elif kind is START_NS or kind is END_NS \ or kind is START_CDATA or kind is END_CDATA: # should we make namespaces work? return None if not ignore_context: outside = (steps[0][0] is SELF and depth[0] != 0) \ or (steps[0][0] is CHILD and depth[0] != 1) \ or (steps[0][0] is DESCENDANT and depth[0] < 1) if kind is START: depth[0] += 1 if outside: return None axis, nodetest, predicates = steps[0] if not nodetest(kind, data, pos, namespaces, variables): return None if predicates: cnum = 0 for predicate in predicates: pretval = predicate(kind, data, pos, namespaces, variables) if type(pretval) is float: # FIXME <- need to check this # for other types that can be # coerced to float if len(counters) < cnum + 1: counters.append(0) counters[cnum] += 1 if counters[cnum] != int(pretval): pretval = False cnum += 1 if not pretval: return None if select_attr: return select_attr(kind, data, pos, namespaces, variables) return True return _test class Path(object): """Implements basic XPath support on streams. Instances of this class represent a "compiled" XPath expression, and provide methods for testing the path against a stream, as well as extracting a substream matching that path. """ STRATEGIES = (SingleStepStrategy, SimplePathStrategy, GenericStrategy) def __init__(self, text, filename=None, lineno=-1): """Create the path object from a string. :param text: the path expression :param filename: the name of the file in which the path expression was found (used in error messages) :param lineno: the line on which the expression was found """ self.source = text self.paths = PathParser(text, filename, lineno).parse() self.strategies = [] for path in self.paths: for strategy_class in self.STRATEGIES: if strategy_class.supports(path): self.strategies.append(strategy_class(path)) break else: raise NotImplemented('No strategy found for path') def __repr__(self): paths = [] for path in self.paths: steps = [] for axis, nodetest, predicates in path: steps.append('%s::%s' % (axis, nodetest)) for predicate in predicates: steps[-1] += '[%s]' % predicate paths.append('/'.join(steps)) return '<%s "%s">' % (type(self).__name__, '|'.join(paths)) def select(self, stream, namespaces=None, variables=None): """Returns a substream of the given stream that matches the path. If there are no matches, this method returns an empty stream. >>> from genshi.input import XML >>> xml = XML('Text') >>> print(Path('.//child').select(xml)) Text >>> print(Path('.//child/text()').select(xml)) Text :param stream: the stream to select from :param namespaces: (optional) a mapping of namespace prefixes to URIs :param variables: (optional) a mapping of variable names to values :return: the substream matching the path, or an empty stream :rtype: `Stream` """ if namespaces is None: namespaces = {} if variables is None: variables = {} stream = iter(stream) def _generate(stream=stream, ns=namespaces, vs=variables): next = stream.next test = self.test() for event in stream: result = test(event, ns, vs) if result is True: yield event if event[0] is START: depth = 1 while depth > 0: subevent = next() if subevent[0] is START: depth += 1 elif subevent[0] is END: depth -= 1 yield subevent test(subevent, ns, vs, updateonly=True) elif result: yield result return Stream(_generate(), serializer=getattr(stream, 'serializer', None)) def test(self, ignore_context=False): """Returns a function that can be used to track whether the path matches a specific stream event. The function returned expects the positional arguments ``event``, ``namespaces`` and ``variables``. The first is a stream event, while the latter two are a mapping of namespace prefixes to URIs, and a mapping of variable names to values, respectively. In addition, the function accepts an ``updateonly`` keyword argument that default to ``False``. If it is set to ``True``, the function only updates its internal state, but does not perform any tests or return a result. If the path matches the event, the function returns the match (for example, a `START` or `TEXT` event.) Otherwise, it returns ``None``. >>> from genshi.input import XML >>> xml = XML('') >>> test = Path('child').test() >>> namespaces, variables = {}, {} >>> for event in xml: ... if test(event, namespaces, variables): ... print('%s %r' % (event[0], event[1])) START (QName('child'), Attrs([(QName('id'), u'2')])) :param ignore_context: if `True`, the path is interpreted like a pattern in XSLT, meaning for example that it will match at any depth :return: a function that can be used to test individual events in a stream against the path :rtype: ``function`` """ tests = [s.test(ignore_context) for s in self.strategies] if len(tests) == 1: return tests[0] def _multi(event, namespaces, variables, updateonly=False): retval = None for test in tests: val = test(event, namespaces, variables, updateonly=updateonly) if retval is None: retval = val return retval return _multi class PathSyntaxError(Exception): """Exception raised when an XPath expression is syntactically incorrect.""" def __init__(self, message, filename=None, lineno=-1, offset=-1): if filename: message = '%s (%s, line %d)' % (message, filename, lineno) Exception.__init__(self, message) self.filename = filename self.lineno = lineno self.offset = offset class PathParser(object): """Tokenizes and parses an XPath expression.""" _QUOTES = (("'", "'"), ('"', '"')) _TOKENS = ('::', ':', '..', '.', '//', '/', '[', ']', '()', '(', ')', '@', '=', '!=', '!', '|', ',', '>=', '>', '<=', '<', '$') _tokenize = re.compile('("[^"]*")|(\'[^\']*\')|((?:\d+)?\.\d+)|(%s)|([^%s\s]+)|\s+' % ( '|'.join([re.escape(t) for t in _TOKENS]), ''.join([re.escape(t[0]) for t in _TOKENS]))).findall def __init__(self, text, filename=None, lineno=-1): self.filename = filename self.lineno = lineno self.tokens = [t for t in [dqstr or sqstr or number or token or name for dqstr, sqstr, number, token, name in self._tokenize(text)] if t] self.pos = 0 # Tokenizer @property def at_end(self): return self.pos == len(self.tokens) - 1 @property def cur_token(self): return self.tokens[self.pos] def next_token(self): self.pos += 1 return self.tokens[self.pos] def peek_token(self): if not self.at_end: return self.tokens[self.pos + 1] return None # Recursive descent parser def parse(self): """Parses the XPath expression and returns a list of location path tests. For union expressions (such as `*|text()`), this function returns one test for each operand in the union. For patch expressions that don't use the union operator, the function always returns a list of size 1. Each path test in turn is a sequence of tests that correspond to the location steps, each tuples of the form `(axis, testfunc, predicates)` """ paths = [self._location_path()] while self.cur_token == '|': self.next_token() paths.append(self._location_path()) if not self.at_end: raise PathSyntaxError('Unexpected token %r after end of expression' % self.cur_token, self.filename, self.lineno) return paths def _location_path(self): steps = [] while True: if self.cur_token.startswith('/'): if not steps: if self.cur_token == '//': # hack to make //* match every node - also root self.next_token() axis, nodetest, predicates = self._location_step() steps.append((DESCENDANT_OR_SELF, nodetest, predicates)) if self.at_end or not self.cur_token.startswith('/'): break continue else: raise PathSyntaxError('Absolute location paths not ' 'supported', self.filename, self.lineno) elif self.cur_token == '//': steps.append((DESCENDANT_OR_SELF, NodeTest(), [])) self.next_token() axis, nodetest, predicates = self._location_step() if not axis: axis = CHILD steps.append((axis, nodetest, predicates)) if self.at_end or not self.cur_token.startswith('/'): break return steps def _location_step(self): if self.cur_token == '@': axis = ATTRIBUTE self.next_token() elif self.cur_token == '.': axis = SELF elif self.cur_token == '..': raise PathSyntaxError('Unsupported axis "parent"', self.filename, self.lineno) elif self.peek_token() == '::': axis = Axis.forname(self.cur_token) if axis is None: raise PathSyntaxError('Unsupport axis "%s"' % axis, self.filename, self.lineno) self.next_token() self.next_token() else: axis = None nodetest = self._node_test(axis or CHILD) predicates = [] while self.cur_token == '[': predicates.append(self._predicate()) return axis, nodetest, predicates def _node_test(self, axis=None): test = prefix = None next_token = self.peek_token() if next_token in ('(', '()'): # Node type test test = self._node_type() elif next_token == ':': # Namespace prefix prefix = self.cur_token self.next_token() localname = self.next_token() if localname == '*': test = QualifiedPrincipalTypeTest(axis, prefix) else: test = QualifiedNameTest(axis, prefix, localname) else: # Name test if self.cur_token == '*': test = PrincipalTypeTest(axis) elif self.cur_token == '.': test = NodeTest() else: test = LocalNameTest(axis, self.cur_token) if not self.at_end: self.next_token() return test def _node_type(self): name = self.cur_token self.next_token() args = [] if self.cur_token != '()': # The processing-instruction() function optionally accepts the # name of the PI as argument, which must be a literal string self.next_token() # ( if self.cur_token != ')': string = self.cur_token if (string[0], string[-1]) in self._QUOTES: string = string[1:-1] args.append(string) cls = _nodetest_map.get(name) if not cls: raise PathSyntaxError('%s() not allowed here' % name, self.filename, self.lineno) return cls(*args) def _predicate(self): assert self.cur_token == '[' self.next_token() expr = self._or_expr() if self.cur_token != ']': raise PathSyntaxError('Expected "]" to close predicate, ' 'but found "%s"' % self.cur_token, self.filename, self.lineno) if not self.at_end: self.next_token() return expr def _or_expr(self): expr = self._and_expr() while self.cur_token == 'or': self.next_token() expr = OrOperator(expr, self._and_expr()) return expr def _and_expr(self): expr = self._equality_expr() while self.cur_token == 'and': self.next_token() expr = AndOperator(expr, self._equality_expr()) return expr def _equality_expr(self): expr = self._relational_expr() while self.cur_token in ('=', '!='): op = _operator_map[self.cur_token] self.next_token() expr = op(expr, self._relational_expr()) return expr def _relational_expr(self): expr = self._sub_expr() while self.cur_token in ('>', '>=', '<', '>='): op = _operator_map[self.cur_token] self.next_token() expr = op(expr, self._sub_expr()) return expr def _sub_expr(self): token = self.cur_token if token != '(': return self._primary_expr() self.next_token() expr = self._or_expr() if self.cur_token != ')': raise PathSyntaxError('Expected ")" to close sub-expression, ' 'but found "%s"' % self.cur_token, self.filename, self.lineno) self.next_token() return expr def _primary_expr(self): token = self.cur_token if len(token) > 1 and (token[0], token[-1]) in self._QUOTES: self.next_token() return StringLiteral(token[1:-1]) elif token[0].isdigit() or token[0] == '.': self.next_token() return NumberLiteral(as_float(token)) elif token == '$': token = self.next_token() self.next_token() return VariableReference(token) elif not self.at_end and self.peek_token().startswith('('): return self._function_call() else: axis = None if token == '@': axis = ATTRIBUTE self.next_token() return self._node_test(axis) def _function_call(self): name = self.cur_token if self.next_token() == '()': args = [] else: assert self.cur_token == '(' self.next_token() args = [self._or_expr()] while self.cur_token == ',': self.next_token() args.append(self._or_expr()) if not self.cur_token == ')': raise PathSyntaxError('Expected ")" to close function argument ' 'list, but found "%s"' % self.cur_token, self.filename, self.lineno) self.next_token() cls = _function_map.get(name) if not cls: raise PathSyntaxError('Unsupported function "%s"' % name, self.filename, self.lineno) return cls(*args) # Type coercion def as_scalar(value): """Convert value to a scalar. If a single element Attrs() object is passed the value of the single attribute will be returned.""" if isinstance(value, Attrs): assert len(value) == 1 return value[0][1] else: return value def as_float(value): # FIXME - if value is a bool it will be coerced to 0.0 and consequently # compared as a float. This is probably not ideal. return float(as_scalar(value)) def as_long(value): return long(as_scalar(value)) def as_string(value): value = as_scalar(value) if value is False: return '' return unicode(value) def as_bool(value): return bool(as_scalar(value)) # Node tests class PrincipalTypeTest(object): """Node test that matches any event with the given principal type.""" __slots__ = ['principal_type'] def __init__(self, principal_type): self.principal_type = principal_type def __call__(self, kind, data, pos, namespaces, variables): if kind is START: if self.principal_type is ATTRIBUTE: return data[1] or None else: return True def __repr__(self): return '*' class QualifiedPrincipalTypeTest(object): """Node test that matches any event with the given principal type in a specific namespace.""" __slots__ = ['principal_type', 'prefix'] def __init__(self, principal_type, prefix): self.principal_type = principal_type self.prefix = prefix def __call__(self, kind, data, pos, namespaces, variables): namespace = Namespace(namespaces.get(self.prefix)) if kind is START: if self.principal_type is ATTRIBUTE and data[1]: return Attrs([(name, value) for name, value in data[1] if name in namespace]) or None else: return data[0] in namespace def __repr__(self): return '%s:*' % self.prefix class LocalNameTest(object): """Node test that matches any event with the given principal type and local name. """ __slots__ = ['principal_type', 'name'] def __init__(self, principal_type, name): self.principal_type = principal_type self.name = name def __call__(self, kind, data, pos, namespaces, variables): if kind is START: if self.principal_type is ATTRIBUTE and self.name in data[1]: return Attrs([(self.name, data[1].get(self.name))]) else: return data[0].localname == self.name def __repr__(self): return self.name class QualifiedNameTest(object): """Node test that matches any event with the given principal type and qualified name. """ __slots__ = ['principal_type', 'prefix', 'name'] def __init__(self, principal_type, prefix, name): self.principal_type = principal_type self.prefix = prefix self.name = name def __call__(self, kind, data, pos, namespaces, variables): qname = QName('%s}%s' % (namespaces.get(self.prefix), self.name)) if kind is START: if self.principal_type is ATTRIBUTE and qname in data[1]: return Attrs([(self.name, data[1].get(self.name))]) else: return data[0] == qname def __repr__(self): return '%s:%s' % (self.prefix, self.name) class CommentNodeTest(object): """Node test that matches any comment events.""" __slots__ = [] def __call__(self, kind, data, pos, namespaces, variables): return kind is COMMENT def __repr__(self): return 'comment()' class NodeTest(object): """Node test that matches any node.""" __slots__ = [] def __call__(self, kind, data, pos, namespaces, variables): if kind is START: return True return kind, data, pos def __repr__(self): return 'node()' class ProcessingInstructionNodeTest(object): """Node test that matches any processing instruction event.""" __slots__ = ['target'] def __init__(self, target=None): self.target = target def __call__(self, kind, data, pos, namespaces, variables): return kind is PI and (not self.target or data[0] == self.target) def __repr__(self): arg = '' if self.target: arg = '"' + self.target + '"' return 'processing-instruction(%s)' % arg class TextNodeTest(object): """Node test that matches any text event.""" __slots__ = [] def __call__(self, kind, data, pos, namespaces, variables): return kind is TEXT def __repr__(self): return 'text()' _nodetest_map = {'comment': CommentNodeTest, 'node': NodeTest, 'processing-instruction': ProcessingInstructionNodeTest, 'text': TextNodeTest} # Functions class Function(object): """Base class for function nodes in XPath expressions.""" class BooleanFunction(Function): """The `boolean` function, which converts its argument to a boolean value. """ __slots__ = ['expr'] _return_type = bool def __init__(self, expr): self.expr = expr def __call__(self, kind, data, pos, namespaces, variables): val = self.expr(kind, data, pos, namespaces, variables) return as_bool(val) def __repr__(self): return 'boolean(%r)' % self.expr class CeilingFunction(Function): """The `ceiling` function, which returns the nearest lower integer number for the given number. """ __slots__ = ['number'] def __init__(self, number): self.number = number def __call__(self, kind, data, pos, namespaces, variables): number = self.number(kind, data, pos, namespaces, variables) return ceil(as_float(number)) def __repr__(self): return 'ceiling(%r)' % self.number class ConcatFunction(Function): """The `concat` function, which concatenates (joins) the variable number of strings it gets as arguments. """ __slots__ = ['exprs'] def __init__(self, *exprs): self.exprs = exprs def __call__(self, kind, data, pos, namespaces, variables): strings = [] for item in [expr(kind, data, pos, namespaces, variables) for expr in self.exprs]: strings.append(as_string(item)) return ''.join(strings) def __repr__(self): return 'concat(%s)' % ', '.join([repr(expr) for expr in self.exprs]) class ContainsFunction(Function): """The `contains` function, which returns whether a string contains a given substring. """ __slots__ = ['string1', 'string2'] def __init__(self, string1, string2): self.string1 = string1 self.string2 = string2 def __call__(self, kind, data, pos, namespaces, variables): string1 = self.string1(kind, data, pos, namespaces, variables) string2 = self.string2(kind, data, pos, namespaces, variables) return as_string(string2) in as_string(string1) def __repr__(self): return 'contains(%r, %r)' % (self.string1, self.string2) class MatchesFunction(Function): """The `matches` function, which returns whether a string matches a regular expression. """ __slots__ = ['string1', 'string2'] flag_mapping = {'s': re.S, 'm': re.M, 'i': re.I, 'x': re.X} def __init__(self, string1, string2, flags=''): self.string1 = string1 self.string2 = string2 self.flags = self._map_flags(flags) def __call__(self, kind, data, pos, namespaces, variables): string1 = as_string(self.string1(kind, data, pos, namespaces, variables)) string2 = as_string(self.string2(kind, data, pos, namespaces, variables)) return re.search(string2, string1, self.flags) def _map_flags(self, flags): return reduce(operator.or_, [self.flag_map[flag] for flag in flags], re.U) def __repr__(self): return 'contains(%r, %r)' % (self.string1, self.string2) class FalseFunction(Function): """The `false` function, which always returns the boolean `false` value.""" __slots__ = [] def __call__(self, kind, data, pos, namespaces, variables): return False def __repr__(self): return 'false()' class FloorFunction(Function): """The `ceiling` function, which returns the nearest higher integer number for the given number. """ __slots__ = ['number'] def __init__(self, number): self.number = number def __call__(self, kind, data, pos, namespaces, variables): number = self.number(kind, data, pos, namespaces, variables) return floor(as_float(number)) def __repr__(self): return 'floor(%r)' % self.number class LocalNameFunction(Function): """The `local-name` function, which returns the local name of the current element. """ __slots__ = [] def __call__(self, kind, data, pos, namespaces, variables): if kind is START: return data[0].localname def __repr__(self): return 'local-name()' class NameFunction(Function): """The `name` function, which returns the qualified name of the current element. """ __slots__ = [] def __call__(self, kind, data, pos, namespaces, variables): if kind is START: return data[0] def __repr__(self): return 'name()' class NamespaceUriFunction(Function): """The `namespace-uri` function, which returns the namespace URI of the current element. """ __slots__ = [] def __call__(self, kind, data, pos, namespaces, variables): if kind is START: return data[0].namespace def __repr__(self): return 'namespace-uri()' class NotFunction(Function): """The `not` function, which returns the negated boolean value of its argument. """ __slots__ = ['expr'] def __init__(self, expr): self.expr = expr def __call__(self, kind, data, pos, namespaces, variables): return not as_bool(self.expr(kind, data, pos, namespaces, variables)) def __repr__(self): return 'not(%s)' % self.expr class NormalizeSpaceFunction(Function): """The `normalize-space` function, which removes leading and trailing whitespace in the given string, and replaces multiple adjacent whitespace characters inside the string with a single space. """ __slots__ = ['expr'] _normalize = re.compile(r'\s{2,}').sub def __init__(self, expr): self.expr = expr def __call__(self, kind, data, pos, namespaces, variables): string = self.expr(kind, data, pos, namespaces, variables) return self._normalize(' ', as_string(string).strip()) def __repr__(self): return 'normalize-space(%s)' % repr(self.expr) class NumberFunction(Function): """The `number` function that converts its argument to a number.""" __slots__ = ['expr'] def __init__(self, expr): self.expr = expr def __call__(self, kind, data, pos, namespaces, variables): val = self.expr(kind, data, pos, namespaces, variables) return as_float(val) def __repr__(self): return 'number(%r)' % self.expr class RoundFunction(Function): """The `round` function, which returns the nearest integer number for the given number. """ __slots__ = ['number'] def __init__(self, number): self.number = number def __call__(self, kind, data, pos, namespaces, variables): number = self.number(kind, data, pos, namespaces, variables) return round(as_float(number)) def __repr__(self): return 'round(%r)' % self.number class StartsWithFunction(Function): """The `starts-with` function that returns whether one string starts with a given substring. """ __slots__ = ['string1', 'string2'] def __init__(self, string1, string2): self.string1 = string1 self.string2 = string2 def __call__(self, kind, data, pos, namespaces, variables): string1 = self.string1(kind, data, pos, namespaces, variables) string2 = self.string2(kind, data, pos, namespaces, variables) return as_string(string1).startswith(as_string(string2)) def __repr__(self): return 'starts-with(%r, %r)' % (self.string1, self.string2) class StringLengthFunction(Function): """The `string-length` function that returns the length of the given string. """ __slots__ = ['expr'] def __init__(self, expr): self.expr = expr def __call__(self, kind, data, pos, namespaces, variables): string = self.expr(kind, data, pos, namespaces, variables) return len(as_string(string)) def __repr__(self): return 'string-length(%r)' % self.expr class SubstringFunction(Function): """The `substring` function that returns the part of a string that starts at the given offset, and optionally limited to the given length. """ __slots__ = ['string', 'start', 'length'] def __init__(self, string, start, length=None): self.string = string self.start = start self.length = length def __call__(self, kind, data, pos, namespaces, variables): string = self.string(kind, data, pos, namespaces, variables) start = self.start(kind, data, pos, namespaces, variables) length = 0 if self.length is not None: length = self.length(kind, data, pos, namespaces, variables) return string[as_long(start):len(as_string(string)) - as_long(length)] def __repr__(self): if self.length is not None: return 'substring(%r, %r, %r)' % (self.string, self.start, self.length) else: return 'substring(%r, %r)' % (self.string, self.start) class SubstringAfterFunction(Function): """The `substring-after` function that returns the part of a string that is found after the given substring. """ __slots__ = ['string1', 'string2'] def __init__(self, string1, string2): self.string1 = string1 self.string2 = string2 def __call__(self, kind, data, pos, namespaces, variables): string1 = as_string(self.string1(kind, data, pos, namespaces, variables)) string2 = as_string(self.string2(kind, data, pos, namespaces, variables)) index = string1.find(string2) if index >= 0: return string1[index + len(string2):] return '' def __repr__(self): return 'substring-after(%r, %r)' % (self.string1, self.string2) class SubstringBeforeFunction(Function): """The `substring-before` function that returns the part of a string that is found before the given substring. """ __slots__ = ['string1', 'string2'] def __init__(self, string1, string2): self.string1 = string1 self.string2 = string2 def __call__(self, kind, data, pos, namespaces, variables): string1 = as_string(self.string1(kind, data, pos, namespaces, variables)) string2 = as_string(self.string2(kind, data, pos, namespaces, variables)) index = string1.find(string2) if index >= 0: return string1[:index] return '' def __repr__(self): return 'substring-after(%r, %r)' % (self.string1, self.string2) class TranslateFunction(Function): """The `translate` function that translates a set of characters in a string to target set of characters. """ __slots__ = ['string', 'fromchars', 'tochars'] def __init__(self, string, fromchars, tochars): self.string = string self.fromchars = fromchars self.tochars = tochars def __call__(self, kind, data, pos, namespaces, variables): string = as_string(self.string(kind, data, pos, namespaces, variables)) fromchars = as_string(self.fromchars(kind, data, pos, namespaces, variables)) tochars = as_string(self.tochars(kind, data, pos, namespaces, variables)) table = dict(zip([ord(c) for c in fromchars], [ord(c) for c in tochars])) return string.translate(table) def __repr__(self): return 'translate(%r, %r, %r)' % (self.string, self.fromchars, self.tochars) class TrueFunction(Function): """The `true` function, which always returns the boolean `true` value.""" __slots__ = [] def __call__(self, kind, data, pos, namespaces, variables): return True def __repr__(self): return 'true()' _function_map = {'boolean': BooleanFunction, 'ceiling': CeilingFunction, 'concat': ConcatFunction, 'contains': ContainsFunction, 'matches': MatchesFunction, 'false': FalseFunction, 'floor': FloorFunction, 'local-name': LocalNameFunction, 'name': NameFunction, 'namespace-uri': NamespaceUriFunction, 'normalize-space': NormalizeSpaceFunction, 'not': NotFunction, 'number': NumberFunction, 'round': RoundFunction, 'starts-with': StartsWithFunction, 'string-length': StringLengthFunction, 'substring': SubstringFunction, 'substring-after': SubstringAfterFunction, 'substring-before': SubstringBeforeFunction, 'translate': TranslateFunction, 'true': TrueFunction} # Literals & Variables class Literal(object): """Abstract base class for literal nodes.""" class StringLiteral(Literal): """A string literal node.""" __slots__ = ['text'] def __init__(self, text): self.text = text def __call__(self, kind, data, pos, namespaces, variables): return self.text def __repr__(self): return '"%s"' % self.text class NumberLiteral(Literal): """A number literal node.""" __slots__ = ['number'] def __init__(self, number): self.number = number def __call__(self, kind, data, pos, namespaces, variables): return self.number def __repr__(self): return str(self.number) class VariableReference(Literal): """A variable reference node.""" __slots__ = ['name'] def __init__(self, name): self.name = name def __call__(self, kind, data, pos, namespaces, variables): return variables.get(self.name) def __repr__(self): return str(self.name) # Operators class AndOperator(object): """The boolean operator `and`.""" __slots__ = ['lval', 'rval'] def __init__(self, lval, rval): self.lval = lval self.rval = rval def __call__(self, kind, data, pos, namespaces, variables): lval = as_bool(self.lval(kind, data, pos, namespaces, variables)) if not lval: return False rval = self.rval(kind, data, pos, namespaces, variables) return as_bool(rval) def __repr__(self): return '%s and %s' % (self.lval, self.rval) class EqualsOperator(object): """The equality operator `=`.""" __slots__ = ['lval', 'rval'] def __init__(self, lval, rval): self.lval = lval self.rval = rval def __call__(self, kind, data, pos, namespaces, variables): lval = as_scalar(self.lval(kind, data, pos, namespaces, variables)) rval = as_scalar(self.rval(kind, data, pos, namespaces, variables)) return lval == rval def __repr__(self): return '%s=%s' % (self.lval, self.rval) class NotEqualsOperator(object): """The equality operator `!=`.""" __slots__ = ['lval', 'rval'] def __init__(self, lval, rval): self.lval = lval self.rval = rval def __call__(self, kind, data, pos, namespaces, variables): lval = as_scalar(self.lval(kind, data, pos, namespaces, variables)) rval = as_scalar(self.rval(kind, data, pos, namespaces, variables)) return lval != rval def __repr__(self): return '%s!=%s' % (self.lval, self.rval) class OrOperator(object): """The boolean operator `or`.""" __slots__ = ['lval', 'rval'] def __init__(self, lval, rval): self.lval = lval self.rval = rval def __call__(self, kind, data, pos, namespaces, variables): lval = as_bool(self.lval(kind, data, pos, namespaces, variables)) if lval: return True rval = self.rval(kind, data, pos, namespaces, variables) return as_bool(rval) def __repr__(self): return '%s or %s' % (self.lval, self.rval) class GreaterThanOperator(object): """The relational operator `>` (greater than).""" __slots__ = ['lval', 'rval'] def __init__(self, lval, rval): self.lval = lval self.rval = rval def __call__(self, kind, data, pos, namespaces, variables): lval = self.lval(kind, data, pos, namespaces, variables) rval = self.rval(kind, data, pos, namespaces, variables) return as_float(lval) > as_float(rval) def __repr__(self): return '%s>%s' % (self.lval, self.rval) class GreaterThanOrEqualOperator(object): """The relational operator `>=` (greater than or equal).""" __slots__ = ['lval', 'rval'] def __init__(self, lval, rval): self.lval = lval self.rval = rval def __call__(self, kind, data, pos, namespaces, variables): lval = self.lval(kind, data, pos, namespaces, variables) rval = self.rval(kind, data, pos, namespaces, variables) return as_float(lval) >= as_float(rval) def __repr__(self): return '%s>=%s' % (self.lval, self.rval) class LessThanOperator(object): """The relational operator `<` (less than).""" __slots__ = ['lval', 'rval'] def __init__(self, lval, rval): self.lval = lval self.rval = rval def __call__(self, kind, data, pos, namespaces, variables): lval = self.lval(kind, data, pos, namespaces, variables) rval = self.rval(kind, data, pos, namespaces, variables) return as_float(lval) < as_float(rval) def __repr__(self): return '%s<%s' % (self.lval, self.rval) class LessThanOrEqualOperator(object): """The relational operator `<=` (less than or equal).""" __slots__ = ['lval', 'rval'] def __init__(self, lval, rval): self.lval = lval self.rval = rval def __call__(self, kind, data, pos, namespaces, variables): lval = self.lval(kind, data, pos, namespaces, variables) rval = self.rval(kind, data, pos, namespaces, variables) return as_float(lval) <= as_float(rval) def __repr__(self): return '%s<=%s' % (self.lval, self.rval) _operator_map = {'=': EqualsOperator, '!=': NotEqualsOperator, '>': GreaterThanOperator, '>=': GreaterThanOrEqualOperator, '<': LessThanOperator, '>=': LessThanOrEqualOperator} _DOTSLASHSLASH = (DESCENDANT_OR_SELF, PrincipalTypeTest(None), ()) _DOTSLASH = (SELF, PrincipalTypeTest(None), ())