# coding: UTF-8 # Copyright 2009, 2010 Thomas Jourdan # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA import random import math import cairo import ka_debug import ka_extensionpoint import model_random import model_constraintpool import model_locus import model_allele EPSILON = 0.00001 DIRECTION_CONSTRAINT = 'directionconstraint' class Direction(model_allele.Allele): """ Direction. A vector in the x-y plane. The vector is defined by angle and radius. """ cdef = [{'bind' : DIRECTION_CONSTRAINT, 'name' : 'Direction constraint', 'domain': model_constraintpool.STRING_1_OF_N, 'enum' : ka_extensionpoint.list_extensions(DIRECTION_CONSTRAINT) }, ] def __init__(self, trunk, radian, offset): """Direction constructor """ super(Direction, self).__init__(trunk) cpool = model_constraintpool.ConstraintPool.get_pool() constraint_name = cpool.get(self, DIRECTION_CONSTRAINT)[0] self.constraint = ka_extensionpoint.create(constraint_name, self.path) self.radian, self.offset = self.constraint.filter(radian, offset) def __eq__(self, other): """Equality based on radian and offset.""" return isinstance(other, Direction) \ and abs(self.radian - other.radian) < EPSILON \ and abs(self.offset - other.offset) < EPSILON def randomize(self): """Set radian and offset to random values.""" cpool = model_constraintpool.ConstraintPool.get_pool() constraints = cpool.get(self, DIRECTION_CONSTRAINT) self.constraint = ka_extensionpoint.create(random.choice(constraints), self.path) self.radian, self.offset = self.constraint.randomize() def mutate(self): """Make small random changes in radian and offset.""" if model_random.is_mutating(): if model_random.is_mutating(): cpool = model_constraintpool.ConstraintPool.get_pool() constraints = cpool.get(self, DIRECTION_CONSTRAINT) self.constraint = ka_extensionpoint.create( random.choice(constraints), self.path) self.radian, self.offset = self.constraint.mutate(self.radian, self.offset) def swap_places(self): """Not implemented.""" def crossingover(self, other): """Returns either a copy of self or a copy of other. pre: isinstance(other, Direction) # check for distinct references, needs to copy content, not references post: __return__ is not self post: __return__ is not other post: model_locus.unique_check(__return__, self, other) == '' """ randseq = model_random.crossing_sequence(1) return self.copy() if randseq[0] else other.copy() def copy(self): """A direction copy constructor post: isinstance(__return__, Direction) # check for distinct references, needs to copy content, not references post: __return__ is not self """ new_one = Direction(self.get_trunk(), 0.0, 0.0) new_one.radian, new_one.offset = self.radian, self.offset new_one.constraint = self.constraint return new_one def explain(self): """Returns a string describing details.""" return '%4.3f, %4.3f' % (self.radian, self.offset) @staticmethod def make_icon(direction_list, width, height): """Calculate an icon visualizing the direction vectors""" surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, width, height) ctx = cairo.Context(surface) ctx.scale(float(width), float(height)) # ka_debug.matrix(ctx.get_matrix()) # paint background ctx.set_operator(cairo.OPERATOR_OVER) ctx.set_source_rgb(1.0, 1.0, 1.0) ctx.paint() ctx.set_line_width(0.02) for direction in direction_list: # paint a arrow for each direction delta_x = direction.offset * math.cos(direction.radian) delta_y = direction.offset * math.sin(direction.radian) ctx.set_source_rgb(0.0, 0.0, 0.0) ctx.move_to(0.5, 0.5) ctx.line_to(0.5+delta_x, 0.5+delta_y) ctx.stroke() return surface