#Copyright (c) 2007-8, Playful Invention Company. #Copyright (c) 2008-11, Walter Bender #Copyright (c) 2011 Collabora Ltd. #Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is #furnished to do so, subject to the following conditions: #The above copyright notice and this permission notice shall be included in #all copies or substantial portions of the Software. #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN #THE SOFTWARE. import gtk from math import pi import os import pango import cairo import pangocairo from tautils import get_path from taconstants import Color, TMP_SVG_PATH def wrap100(n): ''' A variant on mod... 101 -> 99; 199 -> 1 ''' n = int(n) n %= 200 if n > 99: n = 199 - n return n def calc_shade(c, s, invert=False): ''' Convert a color to the current shade (lightness/darkness). ''' # Assumes 16 bit input values if invert: if s == -1: return int(c) elif s < 0: return int(c / (1 + s)) return int((c - 65536 * s) / (1 - s)) else: if s < 0: return int(c * (1 + s)) return int(c + (65536 - c) * s) def calc_gray(c, g, invert=False): ''' Gray is a psuedo saturation calculation. ''' # Assumes 16 bit input values if g == 100: return int(c) if invert: if g == 0: return int(c) else: return int(((c * 100) - (32768 * (100 - g))) / g) else: return int(((c * g) + (32768 * (100 - g))) / 100) colors = {} DEGTOR = pi / 180. RTODEG = 180. / pi COLOR_TABLE = ( 0xFF0000, 0xFF0D00, 0xFF1A00, 0xFF2600, 0xFF3300, 0xFF4000, 0xFF4D00, 0xFF5900, 0xFF6600, 0xFF7300, 0xFF8000, 0xFF8C00, 0xFF9900, 0xFFA600, 0xFFB300, 0xFFBF00, 0xFFCC00, 0xFFD900, 0xFFE600, 0xFFF200, 0xFFFF00, 0xE6FF00, 0xCCFF00, 0xB3FF00, 0x99FF00, 0x80FF00, 0x66FF00, 0x4DFF00, 0x33FF00, 0x1AFF00, 0x00FF00, 0x00FF0D, 0x00FF1A, 0x00FF26, 0x00FF33, 0x00FF40, 0x00FF4D, 0x00FF59, 0x00FF66, 0x00FF73, 0x00FF80, 0x00FF8C, 0x00FF99, 0x00FFA6, 0x00FFB3, 0x00FFBF, 0x00FFCC, 0x00FFD9, 0x00FFE6, 0x00FFF2, 0x00FFFF, 0x00F2FF, 0x00E6FF, 0x00D9FF, 0x00CCFF, 0x00BFFF, 0x00B3FF, 0x00A6FF, 0x0099FF, 0x008CFF, 0x0080FF, 0x0073FF, 0x0066FF, 0x0059FF, 0x004DFF, 0x0040FF, 0x0033FF, 0x0026FF, 0x001AFF, 0x000DFF, 0x0000FF, 0x0D00FF, 0x1A00FF, 0x2600FF, 0x3300FF, 0x4000FF, 0x4D00FF, 0x5900FF, 0x6600FF, 0x7300FF, 0x8000FF, 0x8C00FF, 0x9900FF, 0xA600FF, 0xB300FF, 0xBF00FF, 0xCC00FF, 0xD900FF, 0xE600FF, 0xF200FF, 0xFF00FF, 0xFF00E6, 0xFF00CC, 0xFF00B3, 0xFF0099, 0xFF0080, 0xFF0066, 0xFF004D, 0xFF0033, 0xFF001A) class TurtleGraphics: ''' A class for the Turtle graphics canvas ''' def __init__(self, turtle_window, width, height): ''' Create a sprite to hold the canvas. ''' self.turtle_window = turtle_window self.width = width self.height = height self.textsize = 48 self._fgrgb = [255, 0, 0] self._bgrgb = [255, 248, 222] self._shade = 0 self._color = 0 self._gray = 100 self.cr_svg = None # Surface used for saving to SVG # Build a cairo.Context from a cairo.XlibSurface self.canvas = cairo.Context(self.turtle_window.turtle_canvas) cr = gtk.gdk.CairoContext(self.canvas) cr.set_line_cap(1) # Set the line cap to be round self.set_pen_size(5) def setup_svg_surface(self): ''' Set up a surface for saving to SVG ''' if self.turtle_window.running_sugar: svg_surface = cairo.SVGSurface( os.path.join(get_path(self.turtle_window.activity, 'instance'), 'output.svg'), self.width, self.height) else: svg_surface = cairo.SVGSurface( TMP_SVG_PATH, self.width, self.height) self.cr_svg = cairo.Context(svg_surface) self.cr_svg.set_line_cap(1) # Set the line cap to be round def fill_polygon(self, poly_points): ''' Draw the polygon... ''' def _fill_polygon(cr, poly_points): cr.new_path() for i, p in enumerate(poly_points): if p[0] == 'move': cr.move_to(p[1], p[2]) elif p[0] == 'rarc': cr.arc(p[1], p[2], p[3], p[4], p[5]) elif p[0] == 'larc': cr.arc_negative(p[1], p[2], p[3], p[4], p[5]) else: # line cr.line_to(p[1], p[2]) cr.close_path() cr.fill() _fill_polygon(self.canvas, poly_points) self.inval() if self.cr_svg is not None: _fill_polygon(self.cr_svg, poly_points) def clearscreen(self, share=True): '''Clear the canvas and reset most graphics attributes to defaults.''' def _clearscreen(cr): cr.move_to(0, 0) self._bgrgb = [255, 248, 222] cr.set_source_rgb(self._bgrgb[0] / 255., self._bgrgb[1] / 255., self._bgrgb[2] / 255.) cr.rectangle(0, 0, self.width * 2, self.height * 2) cr.fill() _clearscreen(self.canvas) self.inval() if self.cr_svg is not None: _clearscreen(self.cr_svg) def rarc(self, x, y, r, a, heading): ''' draw a clockwise arc ''' def _rarc(cr, x, y, r, a, h): cr.arc(x, y, r, (h - 180) * DEGTOR, (h - 180 + a) * DEGTOR) cr.stroke() _rarc(self.canvas, x, y, r, a, heading) self.inval() if self.cr_svg is not None: _rarc(self.cr_svg, x, y, r, a, heading) def larc(self, x, y, r, a, heading): ''' draw a counter-clockwise arc ''' def _larc(cr, x, y, r, a, h): cr.arc_negative(x, y, r, h * DEGTOR, (h - a) * DEGTOR) cr.stroke() _larc(self.canvas, x, y, r, a, heading) self.inval() if self.cr_svg is not None: _larc(self.cr_svg, x, y, r, a, heading) def set_pen_size(self, pen_size): ''' Set the pen size ''' self.canvas.set_line_width(pen_size) if self.cr_svg is not None: self.cr_svg.set_line_width(pen_size) def fillscreen(self, c, s): ''' Deprecated method: Fill screen with color/shade ''' self.fillscreen_with_gray(c, s, self._gray) def fillscreen_with_gray(self, color, shade, gray): ''' Fill screen with color/shade/gray and reset to defaults ''' save_rgb = self._fgrgb[:] # Special case for color blocks if isinstance(color, Color): if color.color is None: self._shade = color.shade else: self._color = color.color else: self._color = color if isinstance(shade, Color): self._shade = shade.shade else: self._shade = shade if isinstance(gray, Color): self._gray = gray.gray else: self._gray = gray if self._gray < 0: self._gray = 0 if self._gray > 100: self._gray = 100 self.set_fgcolor(shade=self._shade, gray=self._gray, color=self._color) self._bgrgb = self._fgrgb[:] def _fillscreen(cr, rgb, w, h): cr.set_source_rgb(rgb[0] / 255., rgb[1] / 255., rgb[2] / 255.) cr.rectangle(0, 0, w * 2, h * 2) cr.fill() _fillscreen(self.canvas, self._fgrgb, self.width, self.height) self.inval() if self.cr_svg is not None: _fillscreen(self.cr_svg, self._fgrgb, self.width, self.height) self._fgrgb = save_rgb[:] def set_fgcolor(self, shade=None, gray=None, color=None): ''' Set the foreground color ''' if shade is not None: self._shade = shade if gray is not None: self._gray = gray if color is not None: self._color = color sh = (wrap100(self._shade) - 50) / 50.0 rgb = COLOR_TABLE[wrap100(self._color)] r = (rgb >> 8) & 0xff00 r = calc_gray(r, self._gray) r = calc_shade(r, sh) g = rgb & 0xff00 g = calc_gray(g, self._gray) g = calc_shade(g, sh) b = (rgb << 8) & 0xff00 b = calc_gray(b, self._gray) b = calc_shade(b, sh) self._fgrgb = [r >> 8, g >> 8, b >> 8] def draw_surface(self, surface, x, y, w, h): ''' Draw a surface ''' def _draw_surface(cr, surface, x, y, w, h): cc = gtk.gdk.CairoContext(cr) cc.set_source_surface(surface, x, y) cc.rectangle(x, y, w, h) cc.fill() _draw_surface(self.canvas, surface, x, y, w, h) self.inval() if self.cr_svg is not None: _draw_surface(self.cr_svg, surface, x, y, w, h) def draw_pixbuf(self, pixbuf, a, b, x, y, w, h, heading): ''' Draw a pixbuf ''' def _draw_pixbuf(cr, pixbuf, a, b, x, y, w, h, heading): # Build a gtk.gdk.CairoContext from a cairo.Context to access # the set_source_pixbuf attribute. cc = gtk.gdk.CairoContext(cr) cc.save() # center the rotation on the center of the image cc.translate(x + w / 2., y + h / 2.) cc.rotate(heading * DEGTOR) cc.translate(-x - w / 2., -y - h / 2.) cc.set_source_pixbuf(pixbuf, x, y) cc.rectangle(x, y, w, h) cc.fill() cc.restore() _draw_pixbuf(self.canvas, pixbuf, a, b, x, y, w, h, heading) self.inval() if self.cr_svg is not None: _draw_pixbuf(self.cr_svg, pixbuf, a, b, x, y, w, h, heading) def draw_text(self, label, x, y, size, width, heading, scale): ''' Draw text ''' def _draw_text(cr, label, x, y, size, width, scale, heading, rgb): cc = pangocairo.CairoContext(cr) pl = cc.create_layout() fd = pango.FontDescription('Sans') fd.set_size(int(size * scale) * pango.SCALE) pl.set_font_description(fd) if isinstance(label, (str, unicode)): pl.set_text(label.replace('\0', ' ')) elif isinstance(label, (float, int)): pl.set_text(str(label)) else: pl.set_text(str(label)) pl.set_width(int(width) * pango.SCALE) cc.save() cc.translate(x, y) cc.rotate(heading * DEGTOR) cr.set_source_rgb(rgb[0] / 255., rgb[1] / 255., rgb[2] / 255.) cc.update_layout(pl) cc.show_layout(pl) cc.restore() width *= scale _draw_text(self.canvas, label, x, y, size, width, scale, heading, self._fgrgb) self.inval() if self.cr_svg is not None: # and self.pendown: _draw_text(self.cr_svg, label, x, y, size, width, scale, heading, self._fgrgb) def set_source_rgb(self): r = self._fgrgb[0] / 255. g = self._fgrgb[1] / 255. b = self._fgrgb[2] / 255. self.canvas.set_source_rgb(r, g, b) if self.cr_svg is not None: self.cr_svg.set_source_rgb(r, g, b) def draw_line(self, x1, y1, x2, y2): ''' Draw a line ''' def _draw_line(cr, x1, y1, x2, y2): cr.move_to(x1, y1) cr.line_to(x2, y2) cr.stroke() _draw_line(self.canvas, x1, y1, x2, y2) if self.cr_svg is not None: _draw_line(self.cr_svg, x1, y1, x2, y2) self.inval() def get_color_index(self, r, g, b, a=0): ''' Find the closest palette entry to the rgb triplet ''' if self._shade != 50 or self._gray != 100: r <<= 8 g <<= 8 b <<= 8 if self._shade != 50: sh = (wrap100(self._shade) - 50) / 50. r = calc_shade(r, sh, True) g = calc_shade(g, sh, True) b = calc_shade(b, sh, True) if self._gray != 100: r = calc_gray(r, self._gray, True) g = calc_gray(g, self._gray, True) b = calc_gray(b, self._gray, True) r >>= 8 g >>= 8 b >>= 8 min_distance = 1000000 closest_color = -1 for i, c in enumerate(COLOR_TABLE): cr = int((c & 0xff0000) >> 16) cg = int((c & 0x00ff00) >> 8) cb = int((c & 0x0000ff)) distance_squared = \ ((cr - r) ** 2) + ((cg - g) ** 2) + ((cb - b) ** 2) if distance_squared == 0: return i if distance_squared < min_distance: min_distance = distance_squared closest_color = i return closest_color def get_pixel(self, x, y): ''' Read the pixel at x, y ''' if self.turtle_window.interactive_mode: x = int(x) y = int(y) w = self.turtle_window.turtle_canvas.get_width() h = self.turtle_window.turtle_canvas.get_height() if x < 0 or x > (w - 1) or y < 0 or y > (h - 1): return(-1, -1, -1, -1) # create a new 1x1 cairo surface cs = cairo.ImageSurface(cairo.FORMAT_RGB24, 1, 1) cr = cairo.Context(cs) cr.set_source_surface(self.turtle_window.turtle_canvas, -x, -y) cr.rectangle(0, 0, 1, 1) cr.set_operator(cairo.OPERATOR_SOURCE) cr.fill() cs.flush() # ensure all writing is done pixels = cs.get_data() # Read the pixel return (ord(pixels[2]), ord(pixels[1]), ord(pixels[0]), 0) else: return(-1, -1, -1, -1) def svg_close(self): ''' Close current SVG graphic ''' self.cr_svg.show_page() def svg_reset(self): ''' Reset svg flags ''' self.cr_svg = None def inval(self): ''' Invalidate a region for gtk ''' self.turtle_window.inval_all()