#!/usr/bin/env python #Copyright (c) 2011, 2012 Walter Bender # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA from gettext import gettext as _ try: from numpy.fft import rfft PITCH_AVAILABLE = True except: PITCH_AVAILABLE = False from plugins.plugin import Plugin from plugins.audio_sensors.audiograb import (AudioGrab, SENSOR_DC_NO_BIAS, SENSOR_DC_BIAS, SENSOR_AC_BIAS) from plugins.audio_sensors.ringbuffer import RingBuffer1d from TurtleArt.tapalette import make_palette from TurtleArt.taconstants import XO1, XO15, XO175, XO30, XO4 from TurtleArt.tautils import debug_output from TurtleArt.taprimitive import (ConstantArg, Primitive) from TurtleArt.tatype import TYPE_NUMBER import logging _logger = logging.getLogger('turtleart-activity audio sensors plugin') def _avg(array, abs_value=False): ''' Calc. the average value of an array ''' if len(array) == 0: return 0 array_sum = 0 if abs_value: for a in array: array_sum += abs(a) else: for a in array: array_sum += a return float(array_sum) / len(array) class Audio_sensors(Plugin): def __init__(self, parent): Plugin.__init__(self) self._parent = parent self.audio_started = False self._status = True # TODO: test for audio device # These flags are referenced by audiograb self.hw = self._parent.hw self.running_sugar = self._parent.running_sugar def setup(self): ''' set up audio-sensor-specific blocks ''' self._sound = [0, 0] self._volume = [0, 0] self._pitch = [0, 0] self._resistance = [0, 0] self._voltage = [0, 0] self.max_samples = 1500 self.input_step = 1 self.ringbuffer = [] palette = make_palette('sensor', colors=["#FF6060", "#A06060"], help_string=_('Palette of sensor blocks'), position=6) hidden = True if self._status: hidden = False palette.add_block('sound', hidden=hidden, style='box-style', label=_('sound'), help_string=_('raw microphone input signal'), value_block=True, prim_name='sound') palette.add_block('volume', hidden=hidden, style='box-style', label=_('loudness'), help_string=_('microphone input volume'), value_block=True, prim_name='volume') self._parent.lc.def_prim( 'sound', 0, Primitive(self.prim_sound, return_type=TYPE_NUMBER, kwarg_descs={'channel': ConstantArg(0)}, call_afterwards=self.after_sound)) self._parent.lc.def_prim( 'volume', 0, Primitive(self.prim_volume, return_type=TYPE_NUMBER, kwarg_descs={'channel': ConstantArg(0)}, call_afterwards=self.after_volume)) hidden = True if PITCH_AVAILABLE and self._status: hidden = False palette.add_block('pitch', hidden=hidden, style='box-style', label=_('pitch'), help_string=_('microphone input pitch'), value_block=True, prim_name='pitch') self._parent.lc.def_prim( 'pitch', 0, Primitive(self.prim_pitch, return_type=TYPE_NUMBER, kwarg_descs={'channel': ConstantArg(0)}, call_afterwards=self.after_pitch)) hidden = True if self.hw in [XO1, XO15, XO175, XO4, XO30] and self._status: # Calibration based on http://bugs.sugarlabs.org/ticket/4649 if self.hw == XO1: self.voltage_gain = 0.000022 self.voltage_bias = 1.14 elif self.hw == XO15: self.voltage_gain = -0.00015 self.voltage_bias = 1.70 elif self.hw == XO175: # Range 0.01V to 3.01V self.voltage_gain = 0.0000516 self.voltage_bias = 1.3598 elif self.hw == XO4: # Range 0.17V to 3.08V self.voltage_gain = 0.0004073 self.voltage_bias = 1.6289 else: # XO 3.0 self.voltage_gain = 0.000077 self.voltage_bias = 0.72 hidden = False palette.add_block('resistance', hidden=hidden, style='box-style', label=_('resistance'), help_string=_('microphone input resistance'), prim_name='resistance') palette.add_block('voltage', hidden=hidden, style='box-style', label=_('voltage'), help_string=_('microphone input voltage'), prim_name='voltage') hidden = True # Only add stereo capture for XO15 (broken on ARM #3675) if self.hw in [XO15] and self._status: hidden = False palette.add_block('resistance2', hidden=hidden, style='box-style', label=_('resistance') + '2', help_string=_('microphone input resistance'), prim_name='resistance2') palette.add_block('voltage2', hidden=hidden, style='box-style', label=_('voltage') + '2', help_string=_('microphone input voltage'), prim_name='voltage2') self._parent.lc.def_prim( 'resistance', 0, Primitive(self.prim_resistance, return_type=TYPE_NUMBER, kwarg_descs={'channel': ConstantArg(0)}, call_afterwards=self.after_resistance)) self._parent.lc.def_prim( 'voltage', 0, Primitive(self.prim_voltage, return_type=TYPE_NUMBER, kwarg_descs={'channel': ConstantArg(0)}, call_afterwards=self.after_voltage)) self._parent.lc.def_prim( 'resistance2', 0, Primitive(self.prim_resistance, return_type=TYPE_NUMBER, kwarg_descs={'channel': ConstantArg(1)}, call_afterwards=self.after_resistance)) self._parent.lc.def_prim( 'voltage2', 0, Primitive(self.prim_voltage, return_type=TYPE_NUMBER, kwarg_descs={'channel': ConstantArg(1)}, call_afterwards=self.after_voltage)) if self.hw in [XO175, XO30, XO4]: self.PARAMETERS = { SENSOR_AC_BIAS: (False, True, 80, True), SENSOR_DC_NO_BIAS: (True, False, 80, False), SENSOR_DC_BIAS: (True, True, 90, False) } elif self.hw == XO15: self.PARAMETERS = { SENSOR_AC_BIAS: (False, True, 80, True), SENSOR_DC_NO_BIAS: (True, False, 80, False), SENSOR_DC_BIAS: (True, True, 90, False) } elif self.hw == XO1: self.PARAMETERS = { SENSOR_AC_BIAS: (False, True, 40, True), SENSOR_DC_NO_BIAS: (True, False, 0, False), SENSOR_DC_BIAS: (True, True, 0, False) } else: self.PARAMETERS = { SENSOR_AC_BIAS: (None, True, 40, True), SENSOR_DC_NO_BIAS: (True, False, 80, False), SENSOR_DC_BIAS: (True, True, 90, False) } def start(self): ''' Start grabbing audio if there is an audio block in use ''' if not self._status: return self._sound = [0, 0] self._volume = [0, 0] self._pitch = [0, 0] self._resistance = [0, 0] self._voltage = [0, 0] if self.audio_started: self.audiograb.stop_grabbing() if len(self._parent.block_list.get_similar_blocks( 'block', ['volume', 'sound', 'pitch'])) > 0: mode, bias, gain, boost = self.PARAMETERS[SENSOR_AC_BIAS] elif len(self._parent.block_list.get_similar_blocks( 'block', ['resistance', 'resistance2'])) > 0: mode, bias, gain, boost = self.PARAMETERS[SENSOR_DC_BIAS] elif len(self._parent.block_list.get_similar_blocks( 'block', ['voltage', 'voltage2'])) > 0: mode, bias, gain, boost = self.PARAMETERS[SENSOR_DC_NO_BIAS] else: return # No audio blocks in use. self.audiograb = AudioGrab(self.new_buffer, self, mode, bias, gain, boost) self._channels = self.audiograb.channels for i in range(self._channels): self.ringbuffer.append(RingBuffer1d(self.max_samples, dtype='int16')) self.audiograb.start_grabbing() self.audio_started = True def new_buffer(self, buf, channel=0): ''' Append a new buffer to the ringbuffer ''' self.ringbuffer[channel].append(buf) return True def stop(self): ''' This gets called by the stop button ''' if self._status and self.audio_started: self.audiograb.on_activity_quit() # reset all setting self.audio_started = False def goto_background(self): ''' This gets called when your process is sent to the background ''' pass def return_to_foreground(self): ''' This gets called when your process returns from the background ''' pass def quit(self): ''' This gets called by the quit button ''' if self._status and self.audio_started: self.audiograb.on_activity_quit() def _status_report(self): debug_output( 'Reporting audio sensor status: %s' % (str(self._status)), self._parent.running_sugar) return self._status # Block primitives def prim_sound(self, channel=0): if not self._status: return 0 self._prim_sound(0) # Return average of both channels if sampling in stereo if self._channels == 2: self._prim_sound(1) return (self._sound[0] + self._sound[1]) / 2.0 else: return self._sound[0] def _prim_sound(self, channel): ''' return raw mic in value ''' buf = self.ringbuffer[channel].read(None, self.input_step) if len(buf) > 0: self._sound[channel] = float(buf[0]) else: self._sound[channel] = 0 def after_sound(self, channel=0): if self._parent.lc.update_values: self._parent.lc.update_label_value('sound', self._sound[channel]) def prim_volume(self, channel=0): if not self._status: return 0 self._prim_volume(0) # Return average of both channels if sampling in stereo if self._channels == 2: self._prim_volume(1) return (self._volume[0] + self._volume[1]) / 2.0 else: return self._volume[0] def _prim_volume(self, channel): ''' return raw mic in value ''' buf = self.ringbuffer[channel].read(None, self.input_step) if len(buf) > 0: self._volume[channel] = float(_avg(buf, abs_value=True)) else: self._volume[channel] = 0 def after_volume(self, channel=0): if self._parent.lc.update_values: self._parent.lc.update_label_value('volume', self._volume[channel]) def prim_pitch(self, channel=0): if not self._status: return 0 self._prim_pitch(0) # Return average of both channels if sampling in stereo if self._channels == 2: self._prim_pitch(1) return (self._pitch[0] + self._pitch[1]) / 2.0 else: return self._pitch[0] def _prim_pitch(self, channel): ''' return raw mic in value ''' buf = self.ringbuffer[channel].read(None, self.input_step) if len(buf) > 0: buf = rfft(buf) buf = abs(buf) maxi = buf.argmax() if maxi == 0: self._pitch[channel] = 0 else: # Simple interpolation a, b, c = buf[maxi - 1], buf[maxi], buf[maxi + 1] maxi -= a / float(a + b + c) maxi += c / float(a + b + c) self._pitch[channel] = maxi * 48000 / (len(buf) * 2) else: self._pitch[channel] = 0 def after_pitch(self, channel=0): if self._parent.lc.update_values: self._parent.lc.update_label_value('pitch', self._pitch[channel]) def prim_resistance(self, channel=0): if not self.hw in [XO1, XO15, XO175, XO30, XO4] or not self._status: return 0 if self.hw in [XO1, XO4]: self._prim_resistance(0) return self._resistance[0] elif self.hw == XO15: self._prim_resistance(channel) return self._resistance[channel] # For XO175: channel assignment is seemingly random # (#3675), one of them will be 0 else: self._prim_resistance(0) if self._resistance[0] != 999999999: return self._resistance[0] else: self._prim_resistance(1) return self._resistance[1] def _prim_resistance(self, channel): ''' return resistance sensor value ''' buf = self.ringbuffer[channel].read(None, self.input_step) if len(buf) > 0: # See http://bugs.sugarlabs.org/ticket/552#comment:7 # and http://bugs.sugarlabs.org/ticket/4649 avg_buf = float(_avg(buf)) if self.hw == XO1: self._resistance[channel] = \ 2.718 ** ((avg_buf * 0.000045788) + 8.0531) elif self.hw == XO15: if avg_buf > 0: self._resistance[channel] = (420000000 / avg_buf) - 13500 else: self._resistance[channel] = 420000000 elif self.hw == XO175: # Range 0 to inf ohms if avg_buf < 30519: self._resistance[channel] = \ (92000000. / (30519 - avg_buf)) - 1620 else: self._resistance[channel] = 999999999 elif self.hw == XO4: # Range 0 to inf ohms if avg_buf < 6629: self._resistance[channel] = \ (50000000. / (6629 - avg_buf)) - 3175 else: self._resistance[channel] = 999999999 else: # XO 3.0 if avg_buf < 30514: self._resistance[channel] = \ (46000000. / (30514 - avg_buf)) - 1150 else: self._resistance[channel] = 999999999 if self._resistance[channel] < 0: self._resistance[channel] = 0 else: self._resistance[channel] = 0 def after_resistance(self, channel=0): if self._parent.lc.update_values: self._parent.lc.update_label_value( ['resistance', 'resistance2'][channel], self._resistance[channel]) def prim_voltage(self, channel=0): if not self.hw in [XO1, XO15, XO175, XO30, XO4] or not self._status: return 0 if self.hw in [XO1, XO4]: self._prim_voltage(0) return self._voltage[0] elif self.hw == XO15: self._prim_voltage(channel) return self._voltage[channel] # FIXME: For XO175: channel assignment is seemingly random # (#3675), one of them will be 0 else: self._prim_voltage(0) if self._voltage[0] != 0: return self._voltage[0] else: self._prim_voltage(1) return self._voltage[1] def _prim_voltage(self, channel): ''' return voltage sensor value ''' buf = self.ringbuffer[channel].read(None, self.input_step) buf = self.ringbuffer[channel].read(None, self.input_step) if len(buf) > 0: # See self._voltage[channel] = \ float(_avg(buf)) * self.voltage_gain + self.voltage_bias else: self._voltage[channel] = 0 def after_voltage(self, channel=0): if self._parent.lc.update_values: self._parent.lc.update_label_value( ['voltage', 'voltage2'][channel], self._voltage[channel])