Web   ·   Wiki   ·   Activities   ·   Blog   ·   Lists   ·   Chat   ·   Meeting   ·   Bugs   ·   Git   ·   Translate   ·   Archive   ·   People   ·   Donate
summaryrefslogtreecommitdiffstats
path: root/graph.py
blob: d0d60bbcfaf6600f47ce73490f7929ae17168326 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
#!/usr/bin/env python
"""
 graph.py
 Activity that plots 1st and 2nd degree polynomials
 Part of the olpc.gr project
 Copyright (C) 2009 Xenofon Papadopoulos <xpapad@gmail.com>
"""

# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# 
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
# 
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.


import logging
from gettext import gettext as _
import os
import copy
import time
import math

import cairo
import pango
import gtk
import gtk.glade
import gtk.gdk
import gobject
from gobject import GObject
from math import sqrt, pow
from gtk.gdk import Color
from gtk import ListStore
from gtk import TreeViewColumn

# Check for equality between floats
SIGMA = 1e-6
def equals( x, val ):
	"""Check for equality between floats, using a Sigma of 1e-6"""
	return ( x == val or ( abs( x - val ) <= SIGMA ) )

def markup_func( column, cell, model, iter ):
	cell.props.markup = model.get_value( iter, 0 ).markup
	cell.props.foreground = model.get_value( iter, 0 ).color

def toggle_visible_func( column, cell, model, iter ):
	cell.props.active = model.get_value( iter, 0 ).visible

def toggle_info_func( column, cell, model, iter ):
	cell.props.active = model.get_value( iter, 0 ).info

def rounded_number( x, dec ):
	"""
	Return a text representation of a number with a specified number of
	decimal points.

	x	--	the number to convert to text
	dex	--	the number of decimal points
	"""
	x = float( str( x ) )
	fmt = '%%.%df' % ( dec )
	return fmt % ( x )

def translate_x( x, x_min, x_max, width ):
	return int( ( width * ( x - x_min ) ) / ( x_max - x_min ) )

def translate_y( y, y_min, y_max, height ):
	return int( height - ( height * ( y - y_min ) ) / ( y_max - y_min ) )

class Polynomial( GObject ):
	"""
	A class to handle polynomials of 1st and 2nd degree. It can be expanded
	to support polynomials of higher degree.
	It subclasses gobject.GObject so that it can be used in TreeView models,
	such as a ListStore.
	"""
	def __init__( self, degree ):
		"""Class constructor."""
		self.degree = degree
		self.coefficient = { 0: 0, 1: 0, 2: 0 }
		self.solved = False
		self.D = None
		self.x1 = None
		self.x2 = None
		self.limit = ( None, None )
		self.has_min = None
		self.cmap = gtk.gdk.colormap_get_system()
		self.fg_color = None
		self.is_visible = True
		self.show_marks = True

	def copy( self, obj ):
		"""
		Make a deep copy of the object. The copy.deepcopy() function will
		not work for GObjects.
		"""
		self.degree = obj.degree
		self.coefficient = copy.deepcopy( obj.coefficient )
		self.solved = obj.solved
		self.D = obj.D
		self.x1 = obj.x1
		self.x2 = obj.x2
		self.limit = obj.limit
		self.has_min = obj.has_min
		self.fg_color = obj.fg_color
		self.is_visible = obj.is_visible

	def equals( self, obj ):
		"""
		Check for equality between polynomials. Two polynomials are equal if
		their degree and all their coefficients are equal.
		"""
		if self.degree != obj.degree:
			return False
		degree = self.degree
		while degree >= 0:
			if not equals(self.coefficient[degree], obj.coefficient[degree]):
				return False
			degree = degree - 1
		return True

	def get_coefficient_name( self, degree ):
		"""
		Get a text representation of a coefficient's name. We assume that the
		polynomial's form is a1x^n + a2x^(n-1) + ... + a(n+1). We want to
		display a1 as 'a', a2 as 'b' etc. The exact representation is specified
		in the localization files.
		"""
		index = self.degree - degree + 1	
		name = 'a' + str( index )
		return _( name )
			
	def is_empty( self ):
		"""Check if all coefficients are zero."""
		degree = self.degree
		while degree >= 0:
			if not equals( self.coefficient[ degree ], 0 ):
				return False
			degree = degree - 1	
		return True

	def get_template_markup( self, use_f_notation = False ):
		"""
		Return a notation of the polynomial in Pango markup form. Do not
		use coefficient values; use coefficient names instead.

		use_f_notation	-- 	if True, then use f(x) = ... in the notation,
							otherwise use y = ...
		"""
		msg = ''
		if use_f_notation:
			msg = 'f( x ) = '
		else:
			msg = 'y = '
		degree = self.degree	
		while degree >= 0:
			if degree != self.degree:
				msg = msg + ' + '
			msg = msg + self.get_coefficient_name( degree )
			if degree >= 2:
				msg = msg + 'x<sup>%d</sup>' % ( degree )
			elif degree == 1:
				msg = msg + 'x'
			degree = degree - 1
		return msg

	def get_expression_markup( self, use_f_notation = False ):
		"""
		Return a notation of the polynomial in Pango markup form, by using
		coefficient values.

		use_f_notation	-- 	if True, then use f(x) = ... in the notation,
							otherwise use y = ...
		"""
		msg = ''
		added = False
		degree = self.degree	
		if use_f_notation:
			msg = 'f( x ) = '
		else:
			msg = 'y = '
		while degree >= 0:
			val = self.coefficient[ degree ]
			if equals( val, 0 ):
				degree = degree - 1
				continue

			# We do not display a coefficient of 1, unless it's last one
			if equals( abs( val ), 1.0 ) and degree > 0:
				strval = ''
			else:
				strval = '%.3g' % ( abs( val ) )

			# Display the sign seperated from the coefficient value
			# Only the first factor will be signed normally
			if not added:
				if val < 0:
					msg = msg + '-' + strval
				else:
					msg = msg + strval
			else:
				if val < 0:
					msg = msg + ' - ' + strval
				else:
					msg = msg + ' + ' + strval
			added = True

			# Add the factor notation
			if degree >= 2:
				msg = msg + 'x<sup>%d</sup>' % ( degree )
			elif degree == 1:
				msg = msg + 'x'
			degree = degree - 1

		# Handle the special case where all coefficients are zero
		if not added:
			msg = msg + '0'
		return msg

	def set_expression_markup( self, txt ):
		None

	def set_coefficient( self, degree, value ):
		"""Set the value of the specified coefficient."""
		val = float( str( value ) )
		if equals( val, 0 ):
			val = 0		# For the special case of -0.0
		self.coefficient[ degree ] = float( str( value ) )
		self.solved = False

	def get_coefficients( self ):
		"""Get the values of all coefficients, in order of descending degree."""
		degree = self.degree
		ret = []
		while degree >= 0:
			ret.append( self.coefficient[ degree ] )
			degree = degree - 1
		return ret

	def calculate( self, x ):
		"""Calculate the value of the polynomial for a given x."""
		degree = 0
		y = 0
		# Add in order of increasing degree to keep precision for high x values
		while degree <= self.degree:
			coef = self.coefficient[ degree ]
			val = pow( x, degree )
			y = coef * val + y
			degree = degree + 1
		return y		

	def solve( self ):
		"""
		Solve the polynomial. When the polynomial is solved, x1 and x2 are set
		to the solutions, and D specified the number of solutions:

		D = 0 : one solution (double, in case of a 2nd degree polynomial)
		D > 0 : two solutions (only in the case of a 2nd degree polynomial)
		D < 0 : no solutions
		"""
		a = self.coefficient[ 2 ]
		b = self.coefficient[ 1 ]
		c = self.coefficient[ 0 ]

		if equals( a, 0 ):
			if equals( b, 0 ):
				self.D = -1
				self.x1 = None
				self.x2 = None
				self.solved = True
				return
			self.D = 0
			self.x1 = -c / b
			self.x2 = self.x1
			self.solved = True
			return

		# Solution
		D = b * b - 4 * a * c
		self.D = D

		if equals( D, 0 ):
			x = -b / ( 2 * a )
			self.x1 = x
			self.x2 = x
		elif D > 0:
			self.x1 = ( -b - sqrt( D ) ) / ( 2 * a )
			self.x2 = ( -b + sqrt( D ) ) / ( 2 * a )
			
		else:
			self.x1 = None
			self.x2 = None

		# Akrotata
		x = -b / ( 2 * a )
		y = -D / ( 4 * a )
		if equals( x, 0 ):
			x = 0
		if equals( y, 0 ):
			y = 0
		self.limit = ( x, y )
		if a > 0:
			self.has_min = True
		else:
			self.has_min = False

		self.solved = True

	def get_points_d1( self ):
		"""
		Return a list of points of interest for a 1st degree polynomial.
		Each list element is a tuple of point coordinations.
		Points of interest are the points of intersection of the graph with
		the axis (x=0, y=0)
		"""
		a, b = self.coefficient[ 1 ], self.coefficient[ 0 ]
		ret = []

		# x = 0
		x = 0
		y = self.calculate( x )
		ret.append( ( x, y ) )

		# y = 0
		y = 0
		if not equals( a, 0 ):
			x = -b/a
			ret.append( ( x, y ) )
		return ret	

	def get_points_d2( self ):
		"""
		Return a list of points of interest for a 2nd degree polynomial.
		Each list element is a tuple of point coordinations.
		Points of interest are the points of intersection of the graph with
		the axis (x=0, y=0)
		"""
		ret = []

		# x = 0
		x = 0
		y = self.calculate( x )
		ret.append( ( x, y ) )

		# y = 0
		self.solve()
		if equals( self.D, 0 ):
			x = self.x1
			ret.append( ( x, 0 ) )
		elif self.D > 0:
			for x in [ self.x1, self.x2 ]:
				ret.append( ( x, 0 ) )	
			
		return ret

	def get_points( self ):
		"""
		Return a list of points of interest for a polynomial.
		Each list element is a tuple of point coordinations.
		Points of interest are the points of intersection of the graph with
		the axis (x=0, y=0)
		"""
		if self.degree == 1:
			return self.get_points_d1()
		elif self.degree == 2:
			return self.get_points_d2()
		else:
			return []

	def get_second_degree( self ):
		"""
		Return a 2nd degree polynomial with the same coefficients as a 1st
		degree one. This is used to solve a system of polynomials of 1st and
		2nd degree by converting them all to 2nd degree.
		"""
		poly = Polynomial( 2 )
		if self.degree == 2:
			poly.copy( self )
		else:
			poly.coefficient[ 1 ] = self.coefficient[ 1 ]
			poly.coefficient[ 0 ] = self.coefficient[ 0 ]
			poly.solved = False
		return poly

	def get_common_points( self, poly ):
		"""
		Return a list of intersection points between self and poly. 
		Each list item is a tuple of point coordinations.
		"""
		ret = []

		# Get some 2nd degree polynomials
		if self.degree == 1:
			p1 = self.get_second_degree()
		else:
			p1 = self
		if poly.degree == 1:
			p2 = poly.get_second_degree()
		else:
			p2 = poly

		# We need the common solutions of p1, p2
		p = Polynomial( 2 )
		for i in [ 2, 1, 0 ]:
			p.coefficient[ i ] = p1.coefficient[ i ] - p2.coefficient[ i ]
		p.solve()
		if equals( p.D, 0 ):
			x = p.x1
			y = p1.calculate( x )
			ret.append( ( x, y ) )
		elif p.D > 0:
			for x in [ p.x1, p.x2 ]:
				y = p1.calculate( x )
				ret.append( ( x, y ) )	
		return ret	
	
	markup = property( get_expression_markup )
	"""The markup property."""

	def get_color( self ):
		"""color property getter."""
		return self.fg_color

	def set_color( self, val ):
		"""color property setter."""
		cmap = gtk.gdk.colormap_get_system()
		self.fg_color = cmap.alloc_color( val )

	color = property( get_color )
	"""The color property."""

	def get_visible( self ):
		"""visible property getter."""
		return self.is_visible

	def set_visible( self, state ):
		"""visible property setter."""
		self.is_visible = state

	def toggle_visible( self ):
		"""Toggles the visible property."""
		self.is_visible = not self.is_visible

	visible = property( get_visible, set_visible )	
	"""The visible property."""

	def set_show_marks( self, state ):
		"""info property setter."""
		self.show_marks = state

	def get_show_marks( self ):
		"""info property getter."""
		return self.show_marks

	def toggle_info( self ):
		"""Toggles the info property."""
		self.show_marks = not self.show_marks

	info = property( get_show_marks, set_show_marks )
	"""The info property."""

	def get_x_bounds( self, axis, width, height, real_coords = False ):
		"""
		Return a tuble of x coordinates that restict the visible area of the
		polynomial on the specified screen width.

		real_coords	--	If True, then coordinates are real.
		"""
		axis_x_min, axis_x_max, axis_y_min, axis_y_max = axis
		step = ( axis_x_max - axis_x_min ) / width
		x_min = x_max = None
		xi_min = xi_max = None

		x = axis_x_min
		while x <= axis_x_max:
			y = self.calculate( x )
			xi = translate_x( x, axis_x_min, axis_x_max, width )
			yi = translate_y( y, axis_y_min, axis_y_max, height )
			if ( xi >= 0 and xi <= width and yi >= 0 and yi <= height ):
				if xi_min == None:
					xi_min = xi_max = xi
					x_min = x_max = x
					x = x + step
					continue
				if xi_max < xi:
					xi_max = xi
					x_max = x
			x = x + step

		if real_coords:
			return ( xi_min, xi_max )
		else:
			return ( x_min, x_max )	
		
	def get_animator( self, wnd, gc, pixmap, axis ):
		"""Get the polygon's animator"""		
		if self.degree == 1:
			ani = Animator_Degree_1( self, wnd, gc, pixmap, axis )
		else:
			ani = None
		return ani

class Point:
	"""
	A helper class to handle points of interest of polynomials on the x-y
	axis. It contains the coordinates, and some text to display when the user
	clicks on (or near) them.
	Each point has an associated rectangle of specified size that constitutes
	the 'active' area around the point. The user may click on the rectangle
	to get info about the point.
	Point.x and Point.y are REAL, screen coordinates.
	"""
	def __init__(self, x, y, size = 8):
		"""Class constructor."""
		self.x = x
		self.y = y
		self.size = size
		self.txt = ''
		self.color = None

	def set_text( self, txt ):
		"""Set the text displayed when the user clicks near the points."""	
		self.txt = txt

	def set_poly_coords( self, x, y ):
		"""Set the coordinates of the rectangle displayed at this point."""
		self.poly_x = x
		self.poly_y = y

	def draw( self, wnd, gc, size = 8 ):
		"""Draw a rectangle around this point, with te specified size."""
		old_fg = None
		if size != self.size:
			self.size = size
		if self.color != None:
			old_fg = gc.foreground
			gc.set_foreground( self.color )
		s = self.size
		x,y = self.x,self.y
		wnd.draw_rectangle( gc, True, x - s / 2, y - s / 2, s + 1, s + 1 )
		if old_fg != None:
			gc.set_foreground( old_fg )

	def set_color( self, color ):
		"""Set the color of this point."""
		self.color = color

	def in_window( self, xi, yi ):
		"""Return True if xi, yi reside inside the rectangle of this point."""
		s = self.size
		x,y = self.x, self.y
		if xi < x - s/2 or xi > x + s/2:
			return False
		if yi < y - s/2 or yi > y + s/2:
			return False
		return True

	def get_markup( self ):
		"""Return a formatted string of the point's text."""
		x,y = self.poly_x, self.poly_y
		msg = "x=%s\ny=%s" % ( rounded_number( x, 2 ), rounded_number( y, 2 ) )
		return msg

class Animator:
	"""A helper class to handle animation effects."""
	def __init__(self, poly, wnd, gc, pixmap, axis ):
		self.round = 0
		self.poly = poly
		self.wnd = wnd
		self.gc = gc
		self.pixmap = pixmap
		self.axis = axis
		self.width, self.height = pixmap.get_size()
		self.x_min, self.x_max = poly.get_x_bounds( axis, self.width, self.height )
		self.xi_min = self.translate_x( self.x_min )
		self.xi_max = self.translate_x( self.x_max )

	def translate_x( self, x ):
		axis_x_min, axis_x_max, axis_y_min, axis_y_max = self.axis
		return translate_x( x, axis_x_min, axis_x_max, self.width )

	def translate_y( self, y ):
		axis_x_min, axis_x_max, axis_y_min, axis_y_max = self.axis
		return translate_y( y, axis_y_min, axis_y_max, self.height )

	def animate(self):
		"""
		This is called whenever pixmap needs an update. The method should just
		draw on the pixmap, updates are handled elsewhere.
		
		Return False to end the animation.
		"""
		self.round = self.round + 1
		return self.round != 5
	
	def next_round(self):
		"""Next animator round."""
		self.round = self.round + 1

class Animator_Degree_1( Animator ):
	def __init__(self, poly, wnd, gc, pixmap, axis ):
		Animator.__init__(self, poly, wnd, gc, pixmap, axis)
		self.a = poly.coefficient[ 1 ]
		
		self.pixbufs = [
			self.pixbuf_from_img( "images/bike_rider_1.png", self.a ),
			self.pixbuf_from_img( "images/bike_rider_2.png", self.a ),
			self.pixbuf_from_img( "images/bike_rider_3.png", self.a ) ]

	def pixbuf_from_img( self, img, theta ):
		# Read the bike image
		image = cairo.ImageSurface.create_from_png( img )
		# Calculate the size of the rotated image
		w, h = image.get_width(), image.get_height()
		r = abs( math.atan( theta ) )
		sinf = math.sin( r )
		cosf = math.cos( r )
		new_w = int( w * cosf + h * sinf )
		new_h = int( w * sinf + h * cosf )

		# Create a rotated image of the appropriate size
		surface = cairo.ImageSurface( cairo.FORMAT_ARGB32, new_w, new_h )
		context = cairo.Context( surface )

		# Test rectangle
		"""
		context.set_line_width( 1 )
		context.set_source_rgba( 1, 0, 0 )
		context.rectangle( 0, 0, new_w, new_h )
		context.stroke()
		"""

		if theta >= 0:
			context.translate( 0, w * sinf )
			context.rotate( -r )
		else:
			context.translate( h * sinf, 0 )
			context.rotate( r )
		context.set_source_surface( image )
		context.paint()

		if theta >= 0:
			hypo = h + w * sinf * cosf
			dx = - int( sinf * hypo )
			dy = - int( cosf * hypo )
		else:
			hypo = h * cosf * cosf
			dx = int( sinf * hypo )
			dy = - int( cosf * hypo )
			
		data = surface.get_data()
		width, height = surface.get_width(), surface.get_height()
		stride = surface.get_stride()

		pixbuf = gtk.gdk.pixbuf_new_from_data( data, gtk.gdk.COLORSPACE_RGB, True, 8, width, height, stride )
		return ( pixbuf, dx, dy )

	def animate(self):
		# Get image info
		width, height = self.pixmap.get_size()
		pb, dx, dy = self.pixbufs[ self.round % len( self.pixbufs ) ]
		iw,ih = pb.get_width(), pb.get_height()

		axis_x_min, axis_x_max, axis_y_min, axis_y_max = self.axis
		x_start = axis_x_min
		x_end = axis_x_max

		if self.x_min == None:
			return False

		step = ( self.x_max - self.x_min ) / 45
		x = self.x_min + step * self.round
		self.round = self.round + 1
		if x >= self.x_max:
			return False

		y = self.poly.calculate( x )
		xi, yi = self.translate_x( x ), self.translate_y( y )

		posx = xi + dx
		posy = yi + dy
		self.pixmap.draw_pixbuf( self.gc, pb, 0, 0, posx, posy, iw, ih )
		return True

class Animator_Degree_2( Animator ):
	def __init__(self, poly, wnd, gc, pixmap, axis ):
		Animator.__init__(self, poly, wnd, gc, pixmap, axis)
		self.a = poly.coefficient[ 1 ]
		
		self.pixbufs = [
			self.pixbuf_from_img( "images/bike_rider_1.png", self.a ),
			self.pixbuf_from_img( "images/bike_rider_2.png", self.a ),
			self.pixbuf_from_img( "images/bike_rider_3.png", self.a ) ]

	def pixbuf_from_img( self, img, theta ):
		# Read the bike image
		image = cairo.ImageSurface.create_from_png( img )
		# Calculate the size of the rotated image
		w, h = image.get_width(), image.get_height()
		r = abs( math.atan( theta ) )
		sinf = math.sin( r )
		cosf = math.cos( r )
		new_w = int( w * cosf + h * sinf )
		new_h = int( w * sinf + h * cosf )

		# Create a rotated image of the appropriate size
		surface = cairo.ImageSurface( cairo.FORMAT_ARGB32, new_w, new_h )
		context = cairo.Context( surface )

		# Test rectangle
		"""
		context.set_line_width( 1 )
		context.set_source_rgba( 1, 0, 0 )
		context.rectangle( 0, 0, new_w, new_h )
		context.stroke()
		"""

		if theta >= 0:
			context.translate( 0, w * sinf )
			context.rotate( -r )
		else:
			context.translate( h * sinf, 0 )
			context.rotate( r )
		context.set_source_surface( image )
		context.paint()

		if theta >= 0:
			hypo = h + w * sinf * cosf
			dx = - int( sinf * hypo )
			dy = - int( cosf * hypo )
		else:
			hypo = h * cosf * cosf
			dx = int( sinf * hypo )
			dy = - int( cosf * hypo )
			
		data = surface.get_data()
		width, height = surface.get_width(), surface.get_height()
		stride = surface.get_stride()

		pixbuf = gtk.gdk.pixbuf_new_from_data( data, gtk.gdk.COLORSPACE_RGB, True, 8, width, height, stride )
		return ( pixbuf, dx, dy )

	def animate(self):
		# Get image info
		width, height = self.pixmap.get_size()
		pb, dx, dy = self.pixbufs[ self.round % len( self.pixbufs ) ]
		iw,ih = pb.get_width(), pb.get_height()

		axis_x_min, axis_x_max, axis_y_min, axis_y_max = self.axis
		x_start = axis_x_min
		x_end = axis_x_max

		if self.x_min == None:
			return False

		step = ( self.x_max - self.x_min ) / 45
		x = self.x_min + step * self.round
		self.round = self.round + 1
		if x >= self.x_max:
			return False

		y = self.poly.calculate( x )
		xi, yi = self.translate_x( x ), self.translate_y( y )

		posx = xi + dx
		posy = yi + dy
		self.pixmap.draw_pixbuf( self.gc, pb, 0, 0, posx, posy, iw, ih )
		return True

# The main module class
class Graph:
	"""
	The main application class.
	"""
	def __init__(self, runaslib=True):
		"""Class constructor."""
		# Load Glade XML
		self.xml = gtk.glade.XML( "graph.glade" )

		# Make sure application shuts down if main window closes
		self.w = self.xml.get_widget( 'window_graph' )
		self.w.connect( 'delete_event', gtk.main_quit )

		# Get Windows child
		self.w_child = self.w.get_child()

		# Get a 2nd degree polynomial
		self.poly = None

		# Get widgets
		self.label_info = self.xml.get_widget( 'label_info' )
		self.txt_func_a_1 = self.xml.get_widget( 'txt_func_a_1' )
		self.txt_func_b_1 = self.xml.get_widget( 'txt_func_b_1' )
		self.txt_func_a_2 = self.xml.get_widget( 'txt_func_a_2' )
		self.txt_func_b_2 = self.xml.get_widget( 'txt_func_b_2' )
		self.txt_func_c_2 = self.xml.get_widget( 'txt_func_c_2' )

		# Axis widgets
		self.txt_axis_x_min = self.xml.get_widget( 'txt_axis_x_min' )
		self.txt_axis_x_max = self.xml.get_widget( 'txt_axis_x_max' )
		self.txt_axis_x_step = self.xml.get_widget( 'txt_axis_x_step' )
		self.txt_axis_y_min = self.xml.get_widget( 'txt_axis_y_min' )
		self.txt_axis_y_max = self.xml.get_widget( 'txt_axis_y_max' )
		self.txt_axis_y_step = self.xml.get_widget( 'txt_axis_y_step' )

		# Main tab buttons
		btn_draw = self.xml.get_widget( 'btn_draw' )
		btn_draw.connect( 'clicked', self.on_draw_clicked )
		self.set_button_icon( btn_draw, 'draw.svg' )

		btn_store = self.xml.get_widget( 'btn_store' )
		btn_store.connect( 'clicked', self.on_store_clicked )
		self.set_button_icon( btn_store, 'archive.svg' )

		self.btn_delete = self.xml.get_widget( 'btn_delete' )
		self.btn_delete.connect( 'clicked', self.on_delete_clicked )
		self.set_button_icon( self.btn_delete, 'delete.svg' )

		self.btn_color = self.xml.get_widget( 'btn_color' )
		self.btn_color.connect( 'clicked', self.on_color_clicked )
		self.set_button_icon( self.btn_color, 'color.svg' )
		self.color_dlg = None

		self.btn_animate = self.xml.get_widget( 'btn_animate' )
		self.btn_animate.connect( 'clicked', self.on_animate_clicked )
		self.set_button_icon( self.btn_animate, 'animate.svg' )

		# Config tab buttons
		btn_reset = self.xml.get_widget( 'btn_reset' )
		btn_reset.connect( 'clicked', self.on_reset_clicked )
		self.set_button_icon( btn_reset, 'undo.svg' )

		self.toggle_show_axis_numbers = self.xml.get_widget( "toggle_show_axis_numbers" )
		self.set_button_icon( self.toggle_show_axis_numbers, 'ruller.svg' )

		self.toggle_show_grid = self.xml.get_widget( "toggle_show_grid" )
		self.set_button_icon( self.toggle_show_grid, 'grid.svg' )

		# Setup draw area
		self.draw = self.xml.get_widget( 'drawing_area' )
		self.draw.connect( 'motion_notify_event', self.update_coords )
		self.draw.connect( 'button_press_event', self.on_draw_button_pressed )
		self.draw.connect( 'configure_event', self.on_draw_configure )
		self.draw.connect( "expose_event", self.on_draw_expose )
		self.draw.get_pango_context().set_font_description( pango.FontDescription( "fixed 6" ) )
		self.pixmap = None
		self.old_pixmap = None
		self.gc = None
		self.width = self.height = 0

		# More event handlers
		self.notebook = self.xml.get_widget( 'notebook_app' )
		self.notebook.connect( 'switch_page', self.on_tab_switched )

		# Template labels
		self.notebook_degree = self.xml.get_widget( 'notebook_degree' )
		self.list_functions = self.xml.get_widget( 'list_functions' )
		self.list_functions.connect( "cursor-changed", self.on_functions_updated )
		# setup the view ...
		cellr = gtk.CellRendererText()
		col = TreeViewColumn( _( 'Functions' ), cellr )
		col.set_cell_data_func( cellr, markup_func )
		col.set_expand( True )
		self.list_functions.append_column( col )

		cellr = gtk.CellRendererToggle()
		cellr.connect( "toggled", self.on_visible_toggled )
		pb = gtk.gdk.pixbuf_new_from_file( "icons/eye.png" )
		img = gtk.Image()
		img.set_from_pixbuf( pb )
		img.show()
		col = TreeViewColumn( None, cellr )
		col.set_widget( img )
		col.set_cell_data_func( cellr, toggle_visible_func )
		col.set_expand( False )
		self.list_functions.append_column( col )

		cellr = gtk.CellRendererToggle()
		cellr.connect( "toggled", self.on_info_toggled )
		pb = gtk.gdk.pixbuf_new_from_file( "icons/information.png" )
		img = gtk.Image()
		img.set_from_pixbuf( pb )
		img.show()
		col = TreeViewColumn( None, cellr )
		col.set_widget( img )
		col.set_cell_data_func( cellr, toggle_info_func )
		col.set_expand( False )
		self.list_functions.append_column( col )

		# ... and the model
		self.list_functions.set_model( ListStore( gobject.TYPE_PYOBJECT ) )

		# Labels
		self.label_function_1_template = self.xml.get_widget( 'label_function_1_template' )
		self.label_function_1_template.set_markup( Polynomial( 1 ).get_template_markup() )
		self.label_function_2_template = self.xml.get_widget( 'label_function_2_template' )
		self.label_function_2_template.set_markup( Polynomial( 2 ).get_template_markup() )

		# Info label
		self.label_info = self.xml.get_widget( 'label_info' )
		self.label_info.set_text( '' )
		#self.label_info.modify_font( pango.FontDescription( "sans 14" ) )

		self.label_coords = self.xml.get_widget( 'label_coords' )
		self.label_coords.set_text( '' )

		# a[n] labels
		self.xml.get_widget( "label_a_1" ).set_text( _( 'a1' ) + ' = ' ) 
		self.xml.get_widget( "label_b_1" ).set_text( _( 'a2' ) + ' = ' ) 
		self.xml.get_widget( "label_a_2" ).set_text( _( 'a1' ) + ' = ' ) 
		self.xml.get_widget( "label_b_2" ).set_text( _( 'a2' ) + ' = ' ) 
		self.xml.get_widget( "label_c_2" ).set_text( _( 'a3' ) + ' = ' ) 

		# More labels
		self.xml.get_widget( "label_from_1" ).set_text( _( 'From' ) )
		self.xml.get_widget( "label_from_2" ).set_text( _( 'From' ) )
		self.xml.get_widget( "label_until_1" ).set_text( _( 'To' ) )
		self.xml.get_widget( "label_until_2" ).set_text( _( 'To' ) )
		self.xml.get_widget( "label_step_1" ).set_text( _( 'Step' ) )
		self.xml.get_widget( "label_step_2" ).set_text( _( 'Step' ) )
		self.xml.get_widget( "label_axis" ).set_text( _( 'Axis' ) )
		self.xml.get_widget( "label_dec_1" ).set_text( _( 'Decimals' ) )
		self.xml.get_widget( "label_dec_2" ).set_text( _( 'Decimals' ) )

		# Spin
		self.spin_axis_x_dec = self.xml.get_widget( "spin_axis_x_dec" )
		self.spin_axis_y_dec = self.xml.get_widget( "spin_axis_y_dec" )
		self.spin_axis_x_dec.set_editable( False )
		self.spin_axis_y_dec.set_editable( False )

		# Tab labels
		self.xml.get_widget( "label_tab_graph" ).set_text( _( 'Graph Tab' ) )
		self.xml.get_widget( "label_tab_config" ).set_text( _( 'Config Tab' ) )

		# Get parameters
		self.txt_func_a_1 = self.xml.get_widget( 'txt_func_a_1' )
		self.txt_func_b_1 = self.xml.get_widget( 'txt_func_b_1' )
		self.txt_func_a_2 = self.xml.get_widget( 'txt_func_a_2' )
		self.txt_func_b_2 = self.xml.get_widget( 'txt_func_b_2' )
		self.txt_func_c_2 = self.xml.get_widget( 'txt_func_c_2' )

		# Setup colors
		cmap = gtk.gdk.colormap_get_system()
		self.color_bg = cmap.alloc_color( '#FFFFCC' )
		self.marked_point_color = cmap.alloc_color( '#00FF00' )

		# Setup initial axis values etc
		self.validate_parameters( None )
		self.update_buttons_status()

		# self.widget will be attached to the Activity
		# This can be any GTK widget except a window
		self.widget = self.w_child
		if not runaslib:
			self.w.show_all()
			gtk.main()	

	def set_button_icon( self, btn, file, width = 40, height = 40 ):
		fname = "icons/" + file
		pb = gtk.gdk.pixbuf_new_from_file( fname )
		pb = pb.scale_simple( width, height, gtk.gdk.INTERP_BILINEAR )
		img = gtk.Image()
		img.set_from_pixbuf( pb )
		btn.set_label( '' )
		btn.set_image( img )

	def validate_parameters( self, poly ):
		# Set default function factors
		for txt in ( self.txt_func_a_1, self.txt_func_b_1, self.txt_func_a_2, self.txt_func_b_2, self.txt_func_c_2  ):
			if ( txt.get_text() == '' ):
				txt.set_text( '0' )

		# Override function factors
		try:
			a1 = float( self.txt_func_a_1.get_text() )
			b1 = float( self.txt_func_b_1.get_text() )
			a2 = float( self.txt_func_a_2.get_text() )
			b2 = float( self.txt_func_b_2.get_text() )
			c2 = float( self.txt_func_c_2.get_text() )
		except:
			return False

		# Set default axis values
		if self.txt_axis_x_min.get_text() == '':
			self.txt_axis_x_min.set_text( '-10' )
		if self.txt_axis_x_max.get_text() == '':
			self.txt_axis_x_max.set_text( '10' )
		if self.txt_axis_x_step.get_text() == '':
			self.txt_axis_x_step.set_text( '1' )

		if self.txt_axis_y_min.get_text() == '':
			self.txt_axis_y_min.set_text( '-10' )
		if self.txt_axis_y_max.get_text() == '':
			self.txt_axis_y_max.set_text( '10' )
		if self.txt_axis_y_step.get_text() == '':
			self.txt_axis_y_step.set_text( '1' )

		# Override axis values
		try:
			self.axis_x_min = float( self.txt_axis_x_min.get_text() );
			self.axis_x_max = float( self.txt_axis_x_max.get_text() );
			self.axis_x_step = float( self.txt_axis_x_step.get_text() );

			self.axis_y_min = float( self.txt_axis_y_min.get_text() );
			self.axis_y_max = float( self.txt_axis_y_max.get_text() );
			self.axis_y_step = float( self.txt_axis_y_step.get_text() );
		except:
			return False

		# Update the poly coefficients
		if poly != None:
			if poly.degree == 2:
				poly.set_coefficient( 2, a2 )
				poly.set_coefficient( 1, b2 )
				poly.set_coefficient( 0, c2 )
			elif poly.degree == 1:
				poly.set_coefficient( 1, a1 )
				poly.set_coefficient( 0, b1 )
			else:
				return False

		# Eveything is fine
		return True

	def get_selected_function_iter( self ):
		tree = self.list_functions
		select = tree.get_selection()
		if select == None:
			return
		tree, iter = select.get_selected()
		return iter

	def on_visible_toggled( self, renderer, path, *args ):
		model = self.list_functions.get_model()
		iter = model.get_iter( path )
		if iter == None:
			return		
		poly = model.get_value( iter, 0 )
		poly.toggle_visible()
		self.refresh()

	def on_info_toggled( self, renderer, path, *args ):
		model = self.list_functions.get_model()
		iter = model.get_iter( path )
		if iter == None:
			return		
		poly = model.get_value( iter, 0 )
		poly.toggle_info()
		self.refresh()

	def update_buttons_status( self ):
		iter = self.get_selected_function_iter()
		if iter == None:
			self.btn_delete.set_sensitive( False )
			self.btn_color.set_sensitive( False )
			self.btn_animate.set_sensitive( False )
		else:
			self.btn_delete.set_sensitive( True )
			self.btn_color.set_sensitive( True )
			self.btn_animate.set_sensitive( True )

	def update_all_buttons( self, state ):
		self.notebook.set_sensitive( state )	

	def on_functions_updated( self, tree, *args ):
		self.update_buttons_status( )
	
	def on_animate_clicked( self, *args ):
		self.animate_selected_function()
		return
		
	def on_color_clicked( self, *args ):
		iter = self.get_selected_function_iter()
		if iter == None:
			return
		poly = self.list_functions.get_model().get_value( iter, 0 )
		old_color = poly.get_color()
		dlg  = gtk.ColorSelectionDialog( _( 'Select a color' ) )
		ret = dlg.run()
		if ret == gtk.RESPONSE_OK:
			color = dlg.colorsel.get_current_color()
			if color != old_color:
				poly.set_color( color )
				self.refresh()
		dlg.destroy()

	def on_tab_switched( self, notebook, page, page_num ):
		if page_num == 0:
			self.refresh()

	def on_delete_clicked( self, *args ):
		iter = self.get_selected_function_iter()
		if iter == None:
			return
		model = self.list_functions.get_model()
		model.remove( iter )
		self.update_buttons_status()
		self.refresh()	
	
	def on_draw_button_pressed( self, widget, event ):
		if ( event.button != 1 ):
			return
		wnd = self.pixmap
		gc = self.gc
		for pt in self.points:
			if pt.in_window( event.x, event.y ):
				self.label_info.set_markup( pt.get_markup() )
				for pto in self.points:
					pto.set_color( None )
					pto.draw( wnd, self.gc )
				pt.set_color( self.marked_point_color )
				pt.draw( wnd, gc )
				self.draw.queue_draw()
				return				
	
	def on_reset_clicked( self, *args ):
		self.txt_axis_x_min.set_text( '-10' )
		self.txt_axis_x_max.set_text( '10' )
		self.txt_axis_x_step.set_text( '1' )
		self.txt_axis_y_min.set_text( '-10' )
		self.txt_axis_y_max.set_text( '10' )
		self.txt_axis_y_step.set_text( '1' )

	def refresh( self ):
		wnd = self.pixmap
		gc = self.gc
		visible_polys = []
		points = []
		
		# Get current window dimensions
		self.width, self.height = self.pixmap.get_size()
		self.draw.set_size_request( self.width, self.height )

		wnd.draw_rectangle( self.draw.get_style().white_gc, True, 0, 0, self.width, self.height )
		gc.set_background( self.color_bg )
		self.points = [ ]
		self.draw_axis( wnd, gc )

		# Get a list of all visible polynomials
		model = self.list_functions.get_model()
		iter = model.get_iter_first()
		while iter != None:
			poly = model.get_value( iter, 0 )
			if poly.get_visible():
				visible_polys.append( poly )		
			iter = model.iter_next( iter )
		if self.poly != None:
			visible_polys.append( self.poly )

		# Get a list of points of interest
		m = len( visible_polys )
		i = 0
		for poly in visible_polys:
			self.draw_function( wnd, gc, poly )
			if not poly.info:
				continue

			points = points +  poly.get_points()
			t = i + 1
			while t < m:
				p2 = visible_polys[ t ]
				if not p2.info:
					t = t + 1
					continue
				points = points + poly.get_common_points( p2 )
				t = t + 1
			i = i + 1

		# Now we have the points. Create the data
		for p in points:
			x,y = p
			xi, yi = self.translate_x( x ), self.translate_y( y )
			pt = Point( xi, yi )
			pt.set_poly_coords( x, y )
			pt.draw( wnd, gc )
			self.points.append( pt )

		self.draw.queue_draw()
		
	def copy_pixmap( self, pixmap ):
		width, height = pixmap.get_size()
		cp = gtk.gdk.Pixmap( pixmap, width, height, -1 )
		cp.draw_drawable( self.gc, pixmap, 0, 0, 0, 0, width, height )
		return cp

	def animate( self, animator ):
		w, h = self.pixmap.get_size()
		self.pixmap.draw_drawable( self.gc, self.old_pixmap, 0, 0, 0, 0, w, h ) 
		self.draw.queue_draw()
		ret = animator.animate()
		self.draw.queue_draw()
		if ret == False:
			self.pixmap.draw_drawable( self.gc, self.old_pixmap, 0, 0, 0, 0, w, h ) 
			self.old_pixmap = None
			return False
		return True
		
	# Some animations
	def animate_selected_function( self ):
		# Get the selected polynomial
		iter = self.get_selected_function_iter()
		if iter == None:
			return
		poly = self.list_functions.get_model().get_value( iter, 0 )

		# Store the pixmap
		self.old_pixmap = self.copy_pixmap( self.pixmap )

		# Queue the animation
		axis = ( self.axis_x_min, self.axis_x_max, self.axis_y_min, self.axis_y_max )
		ani = poly.get_animator( self.draw.window, self.gc, self.pixmap, axis )
		if ani != None:
			gobject.timeout_add( 100, self.animate, ani )

	# This is called when the drawing area is created, and every time its
	# size changes
	def on_draw_configure( self, widget, event ):
		x,y,width,height = widget.get_allocation()
		self.pixmap = gtk.gdk.Pixmap( widget.get_window(), width, height, -1 )
		self.pixmap.draw_rectangle( widget.get_style().white_gc, True, 0, 0, width, height )
		if self.gc == None:
			self.gc = self.pixmap.new_gc( )
		self.refresh()

	def on_draw_expose( self, widget, event ):
		x, y, width, height = event.area
		wnd = widget.window
		wnd.draw_drawable( self.gc, self.pixmap, x, y, x, y, width, height )
		return False

	def poly_is_stored( self, poly ):
		model = self.list_functions.get_model()
		iter = model.get_iter_first()
		while iter != None:
			p = model.get_value( iter, 0 )	
			if p.equals( poly ):
				return True
			iter = model.iter_next( iter )
		return False

	def on_store_clicked( self, *args ):
		if self.notebook_degree.get_current_page() == 0:
			poly = Polynomial( 1 )
		else:
			poly = Polynomial( 2 )
		if not self.validate_parameters( poly ):
			# TODO: Warn about error
			return

		# Ignore stored polynomials
		if poly.is_empty() or self.poly_is_stored( poly ):
			return
		self.poly = None

		# add to model
		model = self.list_functions.get_model()
		model.append( [ poly ] )
		self.refresh()
		
	def on_draw_clicked( self, *args ):
		if self.notebook_degree.get_current_page() == 0:
			poly = Polynomial( 1 )
		else:
			poly = Polynomial( 2 )

		# Get and validate function arguments
		if not self.validate_parameters( poly ):
			# TODO: Warn about error
			return

		if poly.is_empty():
			return
		self.poly = poly
		self.refresh()

	# Draw the axes of the graph
	def draw_axis( self, wnd, gc ):
		width = self.width
		height = self.height
		x0 = self.translate_x( 0 )
		y0 = self.translate_y( 0 )
		w = gc.line_width
		gc.line_width = 2
		# y-axis (x=0)
		wnd.draw_line( gc, x0, 0, x0, height ) 
		# x-axis (y=0)
		wnd.draw_line( gc, 0, y0, width, y0 )
		gc.line_width = w
		self.draw_marks( wnd, gc )

	def draw_marks( self, wnd, gc ):
		x0 = self.translate_x( 0 )
		y0 = self.translate_y( 0 )
		width = self.width
		height = self.height
		show_numbers = self.toggle_show_axis_numbers.get_active()
		show_grid = self.toggle_show_grid.get_active()
		x = 0
		dec_x = self.spin_axis_x_dec.get_value_as_int()
		dec_y = self.spin_axis_y_dec.get_value_as_int()

		while x < self.axis_x_max:
			x = x + self.axis_x_step
			if x >= self.axis_x_max:
				break
			tx = self.translate_x( x )
			wnd.draw_line( gc, tx, y0 - 2, tx, y0 + 2 )
			if show_numbers:
				self.add_axis_number( wnd, gc, x, dec_x, tx - 6, y0 + 4 )
			if show_grid:
				wnd.draw_line( gc, tx, 0, tx, height )
		x = 0
		while x > self.axis_x_min:
			x = x - self.axis_x_step
			if x <= self.axis_x_min:
				break
			tx = self.translate_x( x )
			wnd.draw_line( gc, tx, y0 - 2, tx, y0 + 2 )
			if show_numbers:
				self.add_axis_number( wnd, gc, x, dec_x, tx - 6, y0 + 4 )
			if show_grid:
				wnd.draw_line( gc, tx, 0, tx, height )
		y = 0
		while y < self.axis_y_max:
			y = y + self.axis_y_step
			if y >= self.axis_y_max:
				break
			ty = self.translate_y( y )
			wnd.draw_line( gc, x0 - 2, ty, x0 + 2, ty )
			if show_numbers:
				self.add_axis_number( wnd, gc, y, dec_y, x0 - 25, ty - 6 )
			if show_grid:
				wnd.draw_line( gc, 0, ty, width, ty )
		y = 0
		while y > self.axis_y_min:
			y = y - self.axis_y_step
			if y <= self.axis_y_min:
				break
			ty = self.translate_y( y )
			wnd.draw_line( gc, x0 - 2, ty, x0 + 2, ty )
			if show_numbers:
				self.add_axis_number( wnd, gc, y, dec_y, x0 - 25, ty - 6 )
			if show_grid:
				wnd.draw_line( gc, 0, ty, width, ty )

	def add_axis_number( self, wnd, gc, val, dec, x, y ):
		pl = pango.Layout( self.draw.get_pango_context() )
		msg = rounded_number( val, dec )
		pl.set_text( msg )
		wnd.draw_layout( gc, x, y, pl )

	# Draw the graph of the function
	def draw_function( self, wnd, gc, poly ):
		# Setup some graph parameters
		width = self.width
		height = self.height
		x_start = self.axis_x_min
		x_end = self.axis_x_max
		step = ( x_end - x_start ) / width

		# Set the line color
		old_fg = gc.foreground
		fg = poly.get_color()
		if fg != None:
			gc.set_foreground( fg )

		# Erase old point
		old_x, old_y = ( None, None )

		x = x_start
		while x < x_end:
			y = poly.calculate( x )
			x = x + step
			self.draw_line( wnd, gc, old_x, old_y, x, y )
			old_x = x
			old_y = y

		gc.set_foreground( old_fg )

	def translate_x( self, x ):
		width = self.width
		x_min = self.axis_x_min
		x_max = self.axis_x_max
		return int( ( width * ( x - x_min ) ) / ( x_max - x_min ) )

	def rev_translate_x( self, x ):
		width = self.width
		x_min = self.axis_x_min
		x_max = self.axis_x_max
		return x_min + ( x * ( x_max - x_min ) ) / width

	def translate_y( self, y ):
		height = self.height
		y_min = self.axis_y_min
		y_max = self.axis_y_max
		return int( height - ( height * ( y - y_min ) ) / ( y_max - y_min ) )

	def rev_translate_y( self, y ):
		height = self.height
		y_min = self.axis_y_min
		y_max = self.axis_y_max
		return y_min + ( ( height - y ) * ( y_max - y_min ) ) / height 
	
	def draw_line( self, wnd, gc, old_x, old_y, x, y ):
		if old_x == None:
			wnd.draw_point( gc, self.translate_x( x), self.translate_y( y ) )
			return

		x0 = self.translate_x( old_x )
		y0 = self.translate_y( old_y )
		x1 = self.translate_x( x )
		y1 = self.translate_y( y )
		if ( x0 < 0 or x0 > self.width ):
			return
		if ( x1 < 0 or x1 > self.width ):
			return
		if ( y0 < 0 or y0 > self.height ):
			return
		if ( y1 < 0 or y1 > self.height ):
			return

		wnd.draw_line( gc, x0, y0, x1, y1 )

	def update_coords( self, widget, event ):
		if self.width == 0 or self.height == 0:
			return
		if event.is_hint:
			x, y, = event.window.pointer
			state = event.window.pointer_state
		else:
			x = event.x
			y = event.y
			state = event.state
		self.draw.get_pointer()
		x = self.rev_translate_x( x )
		y = self.rev_translate_y( y )
		msg = '(%4.2f,%4.2f)' % ( x, y )
		self.label_coords.set_text( msg )

# Uncomment the following line for stand-alone application
#Graph( False )