Web   ·   Wiki   ·   Activities   ·   Blog   ·   Lists   ·   Chat   ·   Meeting   ·   Bugs   ·   Git   ·   Translate   ·   Archive   ·   People   ·   Donate
summaryrefslogtreecommitdiffstats
path: root/Imaging/libImaging/Antialias.c
blob: 089056e7c539c39e8956f818f8d36307fb16e327 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
/*
 * The Python Imaging Library
 * $Id: Antialias.c 2408 2005-05-15 09:31:27Z Fredrik $
 *
 * pilopen antialiasing support 
 *
 * history:
 * 2002-03-09 fl  Created (for PIL 1.1.3)
 * 2002-03-10 fl  Added support for mode "F"
 *
 * Copyright (c) 1997-2002 by Secret Labs AB
 *
 * See the README file for information on usage and redistribution.
 */

#include "Imaging.h"

#include <math.h>

/* resampling filters (from antialias.py) */

struct filter {
    float (*filter)(float x);
    float support;
};

static inline float sinc_filter(float x)
{
    if (x == 0.0)
        return 1.0;
    x = x * M_PI;
    return sin(x) / x;
}

static inline float antialias_filter(float x)
{
    /* lanczos (truncated sinc) */
    if (-3.0 <= x && x < 3.0)
        return sinc_filter(x) * sinc_filter(x/3);
    return 0.0;
}

static struct filter ANTIALIAS = { antialias_filter, 3.0 };

static inline float nearest_filter(float x)
{
    if (-0.5 <= x && x < 0.5)
        return 1.0;
    return 0.0;
}

static struct filter NEAREST = { nearest_filter, 0.5 };

static inline float bilinear_filter(float x)
{
    if (x < 0.0)
        x = -x;
    if (x < 1.0)
        return 1.0-x;
    return 0.0;
}

static struct filter BILINEAR = { bilinear_filter, 1.0 };

static inline float bicubic_filter(float x)
{
    /* FIXME: double-check this algorithm */
    /* FIXME: for best results, "a" should be -0.5 to -1.0, but we'll
       set it to zero for now, to match the 1.1 magnifying filter */
#define a 0.0
    if (x < 0.0)
        x = -x;
    if (x < 1.0)
        return (((a + 2.0) * x) - (a + 3.0)) * x*x + 1;
    if (x < 2.0)
        return (((a * x) - 5*a) * x + 8) * x - 4*a;
    return 0.0;
#undef a
}

static struct filter BICUBIC = { bicubic_filter, 2.0 };

Imaging
ImagingStretch(Imaging imOut, Imaging imIn, int filter)
{
    /* FIXME: this is a quick and straightforward translation from a
       python prototype.  might need some further C-ification... */

    ImagingSectionCookie cookie;
    struct filter *filterp;
    float support, scale, filterscale;
    float center, ww, ss, ymin, ymax, xmin, xmax;
    int xx, yy, x, y, b;
    float *k;

    /* check modes */
    if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0)
	return (Imaging) ImagingError_ModeError();

    /* check filter */
    switch (filter) {
    case IMAGING_TRANSFORM_NEAREST:
        filterp = &NEAREST;
        break;
    case IMAGING_TRANSFORM_ANTIALIAS:
        filterp = &ANTIALIAS;
        break;
    case IMAGING_TRANSFORM_BILINEAR:
        filterp = &BILINEAR;
        break;
    case IMAGING_TRANSFORM_BICUBIC:
        filterp = &BICUBIC;
        break;
    default:
        return (Imaging) ImagingError_ValueError(
            "unsupported resampling filter"
            );
    }

    if (imIn->ysize == imOut->ysize) {
        /* prepare for horizontal stretch */
        filterscale = scale = (float) imIn->xsize / imOut->xsize;
    } else if (imIn->xsize == imOut->xsize) {
        /* prepare for vertical stretch */
        filterscale = scale = (float) imIn->ysize / imOut->ysize;
    } else
	return (Imaging) ImagingError_Mismatch();

    /* determine support size (length of resampling filter) */
    support = filterp->support;

    if (filterscale < 1.0) {
        filterscale = 1.0;
        support = 0.5;
    }
    
    support = support * filterscale;

    /* coefficient buffer (with rounding safety margin) */
    k = malloc(((int) support * 2 + 10) * sizeof(float));
    if (!k)
        return (Imaging) ImagingError_MemoryError();

    ImagingSectionEnter(&cookie);
    if (imIn->xsize == imOut->xsize) {
        /* vertical stretch */
        for (yy = 0; yy < imOut->ysize; yy++) {
            center = (yy + 0.5) * scale;
            ww = 0.0;
            ss = 1.0 / filterscale;
            /* calculate filter weights */
            ymin = floor(center - support);
            if (ymin < 0.0)
                ymin = 0.0;
            ymax = ceil(center + support);
            if (ymax > imIn->ysize)
                ymax = imIn->ysize;
            for (y = (int) ymin; y < (int) ymax; y++) {
                float w = filterp->filter((y - center + 0.5) * ss) * ss;
                k[y - (int) ymin] = w;
                ww = ww + w;
            }
            if (ww == 0.0)
                ww = 1.0;
            else
                ww = 1.0 / ww;
            if (imIn->image8) {
                /* 8-bit grayscale */
                for (xx = 0; xx < imOut->xsize; xx++) {
                    ss = 0.0;
                    for (y = (int) ymin; y < (int) ymax; y++)
                        ss = ss + imIn->image8[y][xx] * k[y - (int) ymin];
                    ss = ss * ww + 0.5;
                    if (ss < 0.5)
                        imOut->image8[yy][xx] = 0;
                    else if (ss >= 255.0)
                        imOut->image8[yy][xx] = 255;
                    else
                        imOut->image8[yy][xx] = (UINT8) ss;
                }
            } else
                switch(imIn->type) {
                case IMAGING_TYPE_UINT8:
                    /* n-bit grayscale */
                    for (xx = 0; xx < imOut->xsize*4; xx++) {
                        /* FIXME: skip over unused pixels */
                        ss = 0.0;
                        for (y = (int) ymin; y < (int) ymax; y++)
                            ss = ss + (UINT8) imIn->image[y][xx] * k[y-(int) ymin];
                        ss = ss * ww + 0.5;
                        if (ss < 0.5)
                            imOut->image[yy][xx] = (UINT8) 0;
                        else if (ss >= 255.0)
                            imOut->image[yy][xx] = (UINT8) 255;
                        else
                            imOut->image[yy][xx] = (UINT8) ss;
                    }
                    break;
                case IMAGING_TYPE_INT32:
                    /* 32-bit integer */
                    for (xx = 0; xx < imOut->xsize; xx++) {
                        ss = 0.0;
                        for (y = (int) ymin; y < (int) ymax; y++)
                            ss = ss + IMAGING_PIXEL_I(imIn, xx, y) * k[y - (int) ymin];
                        IMAGING_PIXEL_I(imOut, xx, yy) = ss * ww;
                    }
                    break;
                case IMAGING_TYPE_FLOAT32:
                    /* 32-bit float */
                    for (xx = 0; xx < imOut->xsize; xx++) {
                        ss = 0.0;
                        for (y = (int) ymin; y < (int) ymax; y++)
                            ss = ss + IMAGING_PIXEL_F(imIn, xx, y) * k[y - (int) ymin];
                        IMAGING_PIXEL_F(imOut, xx, yy) = ss * ww;
                    }
                    break;
                default:
                    ImagingSectionLeave(&cookie);
                    return (Imaging) ImagingError_ModeError();
                }
        }
    } else {
        /* horizontal stretch */
        for (xx = 0; xx < imOut->xsize; xx++) {
            center = (xx + 0.5) * scale;
            ww = 0.0;
            ss = 1.0 / filterscale;
            xmin = floor(center - support);
            if (xmin < 0.0)
                xmin = 0.0;
            xmax = ceil(center + support);
            if (xmax > imIn->xsize)
                xmax = imIn->xsize;
            for (x = (int) xmin; x < (int) xmax; x++) {
                float w = filterp->filter((x - center + 0.5) * ss) * ss;
                k[x - (int) xmin] = w;
                ww = ww + w;
            }
            if (ww == 0.0)
                ww = 1.0;
            else
                ww = 1.0 / ww;
            if (imIn->image8) {
                /* 8-bit grayscale */
                for (yy = 0; yy < imOut->ysize; yy++) {
                    ss = 0.0;
                    for (x = (int) xmin; x < (int) xmax; x++)
                        ss = ss + imIn->image8[yy][x] * k[x - (int) xmin];
                    ss = ss * ww + 0.5;
                    if (ss < 0.5)
                        imOut->image8[yy][xx] = (UINT8) 0;
                    else if (ss >= 255.0)
                        imOut->image8[yy][xx] = (UINT8) 255;
                    else
                        imOut->image8[yy][xx] = (UINT8) ss;
                }
            } else
                switch(imIn->type) {
                case IMAGING_TYPE_UINT8:
                    /* n-bit grayscale */
                    for (yy = 0; yy < imOut->ysize; yy++) {
                        for (b = 0; b < imIn->bands; b++) {
                            if (imIn->bands == 2 && b)
                                b = 3; /* hack to deal with LA images */
                            ss = 0.0;
                            for (x = (int) xmin; x < (int) xmax; x++)
                                ss = ss + (UINT8) imIn->image[yy][x*4+b] * k[x - (int) xmin];
                            ss = ss * ww + 0.5;
                            if (ss < 0.5)
                                imOut->image[yy][xx*4+b] = (UINT8) 0;
                            else if (ss >= 255.0)
                                imOut->image[yy][xx*4+b] = (UINT8) 255;
                            else
                                imOut->image[yy][xx*4+b] = (UINT8) ss;
                        }
                    }
                    break;
                case IMAGING_TYPE_INT32:
                    /* 32-bit integer */
                    for (yy = 0; yy < imOut->ysize; yy++) {
                        ss = 0.0;
                        for (x = (int) xmin; x < (int) xmax; x++)
                            ss = ss + IMAGING_PIXEL_I(imIn, x, yy) * k[x - (int) xmin];
                        IMAGING_PIXEL_I(imOut, xx, yy) = ss * ww;
                    }
                    break;
                case IMAGING_TYPE_FLOAT32:
                    /* 32-bit float */
                    for (yy = 0; yy < imOut->ysize; yy++) {
                        ss = 0.0;
                        for (x = (int) xmin; x < (int) xmax; x++)
                            ss = ss + IMAGING_PIXEL_F(imIn, x, yy) * k[x - (int) xmin];
                        IMAGING_PIXEL_F(imOut, xx, yy) = ss * ww;
                    }
                    break;
                default:
                    ImagingSectionLeave(&cookie);
                    return (Imaging) ImagingError_ModeError();
                }
        }
    }
    ImagingSectionLeave(&cookie);

    free(k);

    return imOut;
}