Web   ·   Wiki   ·   Activities   ·   Blog   ·   Lists   ·   Chat   ·   Meeting   ·   Bugs   ·   Git   ·   Translate   ·   Archive   ·   People   ·   Donate
summaryrefslogtreecommitdiffstats
path: root/Imaging/libImaging/Effects.c
blob: 2ec08c765654c4b9651de52eece5aa9de4c7cb35 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
/* 
 * The Python Imaging Library
 * $Id: Effects.c 2134 2004-10-06 08:55:20Z fredrik $
 *
 * various special effects and image generators
 *
 * history:
 * 1997-05-21 fl   Just for fun
 * 1997-06-05 fl   Added mandelbrot generator
 * 2003-05-24 fl   Added perlin_turbulence generator (in progress)
 *
 * Copyright (c) 1997-2003 by Fredrik Lundh.
 * Copyright (c) 1997 by Secret Labs AB.
 *
 * See the README file for information on usage and redistribution.
 */


#include "Imaging.h"

#include <math.h>

Imaging
ImagingEffectMandelbrot(int xsize, int ysize, double extent[4], int quality)
{
    /* Generate a Mandelbrot set covering the given extent */

    Imaging im;
    int x, y, k;
    double width, height;
    double x1, y1, xi2, yi2, cr, ci, radius;
    double dr, di;

    /* Check arguments */
    width  = extent[2] - extent[0];
    height = extent[3] - extent[1];
    if (width < 0.0 || height < 0.0 || quality < 2)
        return (Imaging) ImagingError_ValueError(NULL);

    im = ImagingNew("L", xsize, ysize);
    if (!im)
        return NULL;

    dr = width/(xsize-1);
    di = height/(ysize-1);

    radius = 100.0;

    for (y = 0; y < ysize; y++) {
        UINT8* buf = im->image8[y];
	for (x = 0; x < xsize; x++) {
	    x1 = y1 = xi2 = yi2 = 0.0;
	    cr = x*dr + extent[0];
	    ci = y*di + extent[1];
	    for (k = 1;; k++) {
		y1 = 2*x1*y1 + ci;
		x1 = xi2 - yi2 + cr;
		xi2 = x1*x1;
		yi2 = y1*y1;
		if ((xi2 + yi2) > radius) {
		    buf[x] = k*255/quality;
		    break;
		}
		if (k > quality) {
		    buf[x] = 0;
		    break;
		}
	    }
	}
    }
    return im;
}

Imaging
ImagingEffectNoise(int xsize, int ysize, float sigma)
{
    /* Generate gaussian noise centered around 128 */

    Imaging imOut;
    int x, y;
    int nextok;
    double this, next;

    imOut = ImagingNew("L", xsize, ysize);
    if (!imOut)
	return NULL;

    next = 0.0;
    nextok = 0;

    for (y = 0; y < imOut->ysize; y++) {
        UINT8* out = imOut->image8[y];
	for (x = 0; x < imOut->xsize; x++) {
            if (nextok) {
                this = next;
                nextok = 0;
            } else {
                /* after numerical recepies */
                double v1, v2, radius, factor;
                do {
                    v1 = rand()*(2.0/32767.0) - 1.0;
                    v2 = rand()*(2.0/32767.0) - 1.0;
                    radius= v1*v1 + v2*v2;
                } while (radius >= 1.0);
                factor = sqrt(-2.0*log(radius)/radius);
                this = factor * v1;
                next = factor * v2;
            }
            out[x] = (unsigned char) (128 + sigma * this);
        }
    }

    return imOut;
}

Imaging
ImagingEffectPerlinTurbulence(int xsize, int ysize)
{
    /* Perlin turbulence (In progress) */

    return NULL;
}

Imaging
ImagingEffectSpread(Imaging imIn, int distance)
{
    /* Randomly spread pixels in an image */

    Imaging imOut;
    int x, y;

    imOut = ImagingNew(imIn->mode, imIn->xsize, imIn->ysize);

    if (!imOut)
	return NULL;

#define	SPREAD(type, image)\
    for (y = 0; y < imIn->ysize; y++)\
	for (x = 0; x < imIn->xsize; x++) {\
            int xx = x + (rand() % distance) - distance/2;\
            int yy = y + (rand() % distance) - distance/2;\
            if (xx >= 0 && xx < imIn->xsize && yy >= 0 && yy < imIn->ysize) {\
                imOut->image[yy][xx] = imIn->image[y][x];\
                imOut->image[y][x]   = imIn->image[yy][xx];\
            } else\
                imOut->image[y][x]   = imIn->image[y][x];\
        }

    if (imIn->image8) {
	SPREAD(UINT8, image8);
    } else {
	SPREAD(INT32, image32);
    }

    ImagingCopyInfo(imOut, imIn);

    return imOut;
}

/* -------------------------------------------------------------------- */
/* Taken from the "C" code in the W3C SVG specification.  Translated
   to C89 by Fredrik Lundh */

/* Produces results in the range [1, 2**31 - 2].
Algorithm is: r = (a * r) mod m
where a = 16807 and m = 2**31 - 1 = 2147483647
See [Park & Miller], CACM vol. 31 no. 10 p. 1195, Oct. 1988
To test: the algorithm should produce the result 1043618065
as the 10,000th generated number if the original seed is 1.
*/
#define RAND_m 2147483647 /* 2**31 - 1 */
#define RAND_a 16807 /* 7**5; primitive root of m */
#define RAND_q 127773 /* m / a */
#define RAND_r 2836 /* m % a */

static long
perlin_setup_seed(long lSeed)
{
  if (lSeed <= 0) lSeed = -(lSeed % (RAND_m - 1)) + 1;
  if (lSeed > RAND_m - 1) lSeed = RAND_m - 1;
  return lSeed;
}

static long
perlin_random(long lSeed)
{
  long result;
  result = RAND_a * (lSeed % RAND_q) - RAND_r * (lSeed / RAND_q);
  if (result <= 0) result += RAND_m;
  return result;
}

#define BSize 0x100
#define BM 0xff
#define PerlinN 0x1000
#define NP 12 /* 2^PerlinN */
#define NM 0xfff
static int perlin_uLatticeSelector[BSize + BSize + 2];
static double perlin_fGradient[4][BSize + BSize + 2][2];
typedef struct
{
  int nWidth; /* How much to subtract to wrap for stitching. */
  int nHeight;
  int nWrapX; /* Minimum value to wrap. */
  int nWrapY;
} StitchInfo;

static void
perlin_init(long lSeed)
{
  double s;
  int i, j, k;
  lSeed = perlin_setup_seed(lSeed);
  for(k = 0; k < 4; k++)
  {
    for(i = 0; i < BSize; i++)
    {
      perlin_uLatticeSelector[i] = i;
      for (j = 0; j < 2; j++)
        perlin_fGradient[k][i][j] = (double)(((lSeed = perlin_random(lSeed)) % (BSize + BSize)) - BSize) / BSize;
      s = (double) (sqrt(perlin_fGradient[k][i][0] * perlin_fGradient[k][i][0] + perlin_fGradient[k][i][1] * perlin_fGradient[k][i][1]));
      perlin_fGradient[k][i][0] /= s;
      perlin_fGradient[k][i][1] /= s;
    }
  }
  while(--i)
  {
    k = perlin_uLatticeSelector[i];
    perlin_uLatticeSelector[i] = perlin_uLatticeSelector[j = (lSeed = perlin_random(lSeed)) % BSize];
    perlin_uLatticeSelector[j] = k;
  }
  for(i = 0; i < BSize + 2; i++)
  {
    perlin_uLatticeSelector[BSize + i] = perlin_uLatticeSelector[i];
    for(k = 0; k < 4; k++)
      for(j = 0; j < 2; j++)
        perlin_fGradient[k][BSize + i][j] = perlin_fGradient[k][i][j];
  }
}

#define s_curve(t) ( t * t * (3. - 2. * t) )
#define lerp(t, a, b) ( a + t * (b - a) )
static double
perlin_noise2(int nColorChannel, double vec[2], StitchInfo *pStitchInfo)
{
  int bx0, bx1, by0, by1, b00, b10, b01, b11;
  double rx0, rx1, ry0, ry1, *q, sx, sy, a, b, t, u, v;
  register int i, j;

  t = vec[0] + (double) PerlinN;
  bx0 = (int)t;
  bx1 = bx0+1;
  rx0 = t - (int)t;
  rx1 = rx0 - 1.0f;
  t = vec[1] + (double) PerlinN;
  by0 = (int)t;
  by1 = by0+1;
  ry0 = t - (int)t;
  ry1 = ry0 - 1.0f;

  /* If stitching, adjust lattice points accordingly. */
  if(pStitchInfo != NULL)
  {
    if(bx0 >= pStitchInfo->nWrapX)
      bx0 -= pStitchInfo->nWidth;
    if(bx1 >= pStitchInfo->nWrapX)
      bx1 -= pStitchInfo->nWidth;
    if(by0 >= pStitchInfo->nWrapY)
      by0 -= pStitchInfo->nHeight;
    if(by1 >= pStitchInfo->nWrapY)
      by1 -= pStitchInfo->nHeight;
  }

  bx0 &= BM;
  bx1 &= BM;
  by0 &= BM;
  by1 &= BM;

  i = perlin_uLatticeSelector[bx0];
  j = perlin_uLatticeSelector[bx1];
  b00 = perlin_uLatticeSelector[i + by0];
  b10 = perlin_uLatticeSelector[j + by0];
  b01 = perlin_uLatticeSelector[i + by1];
  b11 = perlin_uLatticeSelector[j + by1];
  sx = (double) (s_curve(rx0));
  sy = (double) (s_curve(ry0));
  q = perlin_fGradient[nColorChannel][b00]; u = rx0 * q[0] + ry0 * q[1];
  q = perlin_fGradient[nColorChannel][b10]; v = rx1 * q[0] + ry0 * q[1];
  a = lerp(sx, u, v);
  q = perlin_fGradient[nColorChannel][b01]; u = rx0 * q[0] + ry1 * q[1];
  q = perlin_fGradient[nColorChannel][b11]; v = rx1 * q[0] + ry1 * q[1];
  b = lerp(sx, u, v);
  return lerp(sy, a, b);
}

double
perlin_turbulence(
    int nColorChannel, double *point, double fBaseFreqX, double fBaseFreqY,
    int nNumOctaves, int bFractalSum, int bDoStitching,
    double fTileX, double fTileY, double fTileWidth, double fTileHeight)
{
  StitchInfo stitch;
  StitchInfo *pStitchInfo = NULL; /* Not stitching when NULL. */

  double fSum = 0.0f;
  double vec[2];
  double ratio = 1;

  int nOctave;

  vec[0] = point[0] * fBaseFreqX;
  vec[1] = point[1] * fBaseFreqY;

  /* Adjust the base frequencies if necessary for stitching. */
  if(bDoStitching)
  {
    /* When stitching tiled turbulence, the frequencies must be adjusted */
    /* so that the tile borders will be continuous. */
    if(fBaseFreqX != 0.0)
    {
      double fLoFreq = (double) (floor(fTileWidth * fBaseFreqX)) / fTileWidth;
      double fHiFreq = (double) (ceil(fTileWidth * fBaseFreqX)) / fTileWidth;
      if(fBaseFreqX / fLoFreq < fHiFreq / fBaseFreqX)
        fBaseFreqX = fLoFreq;
      else
        fBaseFreqX = fHiFreq;
    }

    if(fBaseFreqY != 0.0)
    {
      double fLoFreq = (double) (floor(fTileHeight * fBaseFreqY)) / fTileHeight;
      double fHiFreq = (double) (ceil(fTileHeight * fBaseFreqY)) / fTileHeight;
      if(fBaseFreqY / fLoFreq < fHiFreq / fBaseFreqY)
        fBaseFreqY = fLoFreq;
      else
        fBaseFreqY = fHiFreq;
    }

    /* Set up initial stitch values. */
    pStitchInfo = &stitch;
    stitch.nWidth = (int) (fTileWidth * fBaseFreqX + 0.5f);
    stitch.nWrapX = (int) (fTileX * fBaseFreqX + PerlinN + stitch.nWidth);
    stitch.nHeight = (int) (fTileHeight * fBaseFreqY + 0.5f);
    stitch.nWrapY = (int) (fTileY * fBaseFreqY + PerlinN + stitch.nHeight);
  }

  for(nOctave = 0; nOctave < nNumOctaves; nOctave++)
  {
    if(bFractalSum)
      fSum += (double) (perlin_noise2(nColorChannel, vec, pStitchInfo) / ratio);
    else
      fSum += (double) (fabs(perlin_noise2(nColorChannel, vec, pStitchInfo)) / ratio);

    vec[0] *= 2;
    vec[1] *= 2;
    ratio *= 2;

    if(pStitchInfo != NULL)
    {
        /* Update stitch values. Subtracting PerlinN before the multiplication and */
        /* adding it afterward simplifies to subtracting it once. */
      stitch.nWidth *= 2;
      stitch.nWrapX = 2 * stitch.nWrapX - PerlinN;
      stitch.nHeight *= 2;
      stitch.nWrapY = 2 * stitch.nWrapY - PerlinN;
    }
  }
  return fSum;
}