Web   ·   Wiki   ·   Activities   ·   Blog   ·   Lists   ·   Chat   ·   Meeting   ·   Bugs   ·   Git   ·   Translate   ·   Archive   ·   People   ·   Donate
summaryrefslogtreecommitdiffstats
path: root/Imaging/libImaging/Histo.c
blob: b69b1dbcbacf80f8547350b370c45a0e93240a98 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
/*
 * The Python Imaging Library
 * $Id: Histo.c 2134 2004-10-06 08:55:20Z fredrik $
 *
 * histogram support
 *
 * history:
 * 1995-06-15 fl   Created.
 * 1996-04-05 fl   Fixed histogram for multiband images.
 * 1997-02-23 fl   Added mask support
 * 1998-07-01 fl   Added basic 32-bit float/integer support
 *
 * Copyright (c) 1997-2003 by Secret Labs AB.
 * Copyright (c) 1995-2003 by Fredrik Lundh.
 *
 * See the README file for information on usage and redistribution.
 */


#include "Imaging.h"


/* HISTOGRAM */
/* --------------------------------------------------------------------
 * Take a histogram of an image. Returns a histogram object containing
 * 256 slots per band in the input image.
 */

void
ImagingHistogramDelete(ImagingHistogram h)
{
    if (h->histogram)
	free(h->histogram);
    free(h);
}

ImagingHistogram
ImagingHistogramNew(Imaging im)
{
    ImagingHistogram h;

    /* Create histogram descriptor */
    h = calloc(1, sizeof(struct ImagingHistogramInstance));
    strcpy(h->mode, im->mode);
    h->bands = im->bands;
    h->histogram = calloc(im->pixelsize, 256 * sizeof(long));

    return h;
}

ImagingHistogram
ImagingGetHistogram(Imaging im, Imaging imMask, void* minmax)
{
    ImagingSectionCookie cookie;
    int x, y, i;
    ImagingHistogram h;
    INT32 imin, imax;
    FLOAT32 fmin, fmax, scale;

    if (!im)
	return ImagingError_ModeError();

    if (imMask) {
	/* Validate mask */
	if (im->xsize != imMask->xsize || im->ysize != imMask->ysize)
	    return ImagingError_Mismatch();
	if (strcmp(imMask->mode, "1") != 0 && strcmp(imMask->mode, "L") != 0)
	    return ImagingError_ValueError("bad transparency mask");
    }

    h = ImagingHistogramNew(im);

    if (imMask) {
	/* mask */
	if (im->image8) {
            ImagingSectionEnter(&cookie);
	    for (y = 0; y < im->ysize; y++)
		for (x = 0; x < im->xsize; x++)
		    if (imMask->image8[y][x] != 0)
			h->histogram[im->image8[y][x]]++;
            ImagingSectionLeave(&cookie);
	} else { /* yes, we need the braces. C isn't Python! */
            if (im->type != IMAGING_TYPE_UINT8)
                return ImagingError_ModeError();
            ImagingSectionEnter(&cookie);
	    for (y = 0; y < im->ysize; y++) {
		UINT8* in = (UINT8*) im->image32[y];
		for (x = 0; x < im->xsize; x++)
		    if (imMask->image8[y][x] != 0) {
			h->histogram[(*in++)]++;
			h->histogram[(*in++)+256]++;
			h->histogram[(*in++)+512]++;
			h->histogram[(*in++)+768]++;
		    } else
			in += 4;
	    }
            ImagingSectionLeave(&cookie);
	}
    } else {
	/* mask not given; process pixels in image */
	if (im->image8) {
            ImagingSectionEnter(&cookie);
	    for (y = 0; y < im->ysize; y++)
		for (x = 0; x < im->xsize; x++)
		    h->histogram[im->image8[y][x]]++;
            ImagingSectionLeave(&cookie);
	} else {
            switch (im->type) {
            case IMAGING_TYPE_UINT8:
                ImagingSectionEnter(&cookie);
                for (y = 0; y < im->ysize; y++) {
                    UINT8* in = (UINT8*) im->image[y];
                    for (x = 0; x < im->xsize; x++) {
                        h->histogram[(*in++)]++;
                        h->histogram[(*in++)+256]++;
                        h->histogram[(*in++)+512]++;
                        h->histogram[(*in++)+768]++;
                    }
                }
                ImagingSectionLeave(&cookie);
                break;
            case IMAGING_TYPE_INT32:
                if (!minmax)
                    return ImagingError_ValueError("min/max not given");
                if (!im->xsize || !im->ysize)
                    break;
                imin = ((INT32*) minmax)[0];
                imax = ((INT32*) minmax)[1];
                if (imin >= imax)
                    break;
                ImagingSectionEnter(&cookie);
                scale = 255.0F / (imax - imin);
                for (y = 0; y < im->ysize; y++) {
                    INT32* in = im->image32[y];
                    for (x = 0; x < im->xsize; x++) {
                        i = (int) (((*in++)-imin)*scale);
                        if (i >= 0 && i < 256)
                            h->histogram[i]++;
                    }
                }
                ImagingSectionLeave(&cookie);
                break;
            case IMAGING_TYPE_FLOAT32:
                if (!minmax)
                    return ImagingError_ValueError("min/max not given");
                if (!im->xsize || !im->ysize)
                    break;
                fmin = ((FLOAT32*) minmax)[0];
                fmax = ((FLOAT32*) minmax)[1];
                if (fmin >= fmax)
                    break;
                ImagingSectionEnter(&cookie);
                scale = 255.0F / (fmax - fmin);
                for (y = 0; y < im->ysize; y++) {
                    FLOAT32* in = (FLOAT32*) im->image32[y];
                    for (x = 0; x < im->xsize; x++) {
                        i = (int) (((*in++)-fmin)*scale);
                        if (i >= 0 && i < 256)
                            h->histogram[i]++;
                    }
                }
                ImagingSectionLeave(&cookie);
                break;
            }
        }
    }

    return h;
}