Web   ·   Wiki   ·   Activities   ·   Blog   ·   Lists   ·   Chat   ·   Meeting   ·   Bugs   ·   Git   ·   Translate   ·   Archive   ·   People   ·   Donate
summaryrefslogtreecommitdiffstats
path: root/implodegame.py
blob: 7841d697cf4ebf763c9f56054b9bdd0feec07127 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
#!/usr/bin/env python
#
# Copyright (C) 2007-2009, Joseph C. Lee
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA

import logging
_logger = logging.getLogger('implode-activity.implodegame')

from gettext import gettext as _

from gi.repository import Gtk
from gi.repository import GObject
import random
import time

from anim import Anim
import board
import boardgen
import gridwidget

# Amount of time to wait after the player is stuck to display the "stuck"
# dialog, in seconds.
_STUCK_DELAY = 0.5

# Amount of time to wait between undos when undoing the board to a solvable
# state after the player gets stuck, in seconds.
_UNDO_DELAY = 0.3

class ImplodeGame(Gtk.EventBox):
    """Gtk widget for playing the implode game."""

    __gsignals__ = {
        'show-stuck': (GObject.SignalFlags.RUN_LAST, None, (int,)),
    }

    def __init__(self, *args, **kwargs):
        super(ImplodeGame, self).__init__(*args, **kwargs)
        self._animate = True
        self._anim = None

        self._board = None
        # Undo and redo stacks are pairs of (board state, subsequent move).
        self._undo_stack = []
        self._redo_stack = []
        self._winning_moves = []

        self._random = random.Random()
        #self._random.seed(0)
        self._difficulty = 0
        self._size = (8, 6)
        self._seed = 0
        self._fragmentation = 0

        self._grid = gridwidget.GridWidget()
        self._grid.connect('piece-selected', self._piece_selected_cb)
        self._grid.connect('undo-key-pressed', self._undo_key_pressed_cb)
        self._grid.connect('redo-key-pressed', self._redo_key_pressed_cb)
        self._grid.connect('new-key-pressed', self._new_key_pressed_cb)
        self.add(self._grid)

        self.new_game()

    def grab_focus(self):
        self._grid.grab_focus()
        #self._grid.select_center_cell()

    def new_game(self):
        self._hide_stuck()
        self._stop_animation()
        self._seed = self._random.randint(0, 99999)
        size_frag_dict = {
            0: (( 8,  6), 0),
            1: ((12, 10), 0),
            2: ((20, 15), 2),
        }
        (self._size, self._fragmentation) = size_frag_dict[self._difficulty]
        self._reset_board()

    def replay_game(self):
        self._hide_stuck()
        self._stop_animation()
        self._reset_board()

    def undo(self):
        self._hide_stuck()
        self._stop_animation()
        if len(self._undo_stack) == 0:
            return

        self._undo_last_move()

    def undo_to_solvable_state(self):
        # Undoes the player's moves until the puzzle is in a solvable state.
        #
        # Actually, we undo moves until the player's moves so far match the
        # beginning of a list of moves known to solve the puzzle, as given by
        # the puzzle generator.  Since each puzzle can potentially be solved
        # through many different sequences of moves, we will almost certainly
        # be undoing more moves than we need to.  One possible improvement
        # would be to write a generic puzzle solver that can test some of the
        # player's later board states for solvability, so that we don't need to
        # undo as many moves.

        self._hide_stuck()
        self._stop_animation()
        if len(self._undo_stack) == 0:
            return

        start_time = time.time()

        def update_func(start_time_ref = [start_time]):
            delta = time.time() - start_time_ref[0]
            if delta > _UNDO_DELAY:
                self._undo_last_move()
                moves = self._get_moves_so_far()
                if moves == self._winning_moves[:len(moves)]:
                    return False
                start_time_ref[0] = time.time()
            return True

        def end_anim_func(anim_stopped):
            moves = self._get_moves_so_far()
            while moves != self._winning_moves[:len(moves)]:
                self._undo_last_move()
                moves = self._get_moves_so_far()

        self._anim = Anim(update_func, end_anim_func)
        self._anim.start()

    def _get_moves_so_far(self):
        # Returns a list of the moves so far.
        return [move for (board, move) in self._undo_stack]

    def _undo_last_move(self):
        # Undoes the most recent move and stores the state on the undo stack.
        (board, move) = self._undo_stack.pop()
        self._redo_stack.append((self._board, move))
        self._board = board

        # Force board refresh.
        self._grid.set_board(self._board)
        self._grid.set_win_draw_flag(False)

    def redo(self):
        self._hide_stuck()
        self._stop_animation()
        if len(self._redo_stack) == 0:
            return

        (board, move) = self._redo_stack.pop()
        self._undo_stack.append((self._board, move))
        self._board = board

        # Force board refresh.
        self._grid.set_board(self._board)

        self._check_for_lose_state()

    def set_level(self, level):
        self._difficulty = level

    def get_game_state(self):
        # Returns a dictionary containing the game state, in atomic subobjects.
        def encode_board(board, move):
            # Encodes the given board and move to a state array.
            (w, h) = (board.width, board.height)
            data = []
            for i in range(h):
                for j in range(w):
                    data.append(board.get_value(j, i))
            if move is not None:
                return [w, h] + data + list(move)
            else:
                return [w, h] + data
        return {
            'difficulty' : self._difficulty,
            'seed' : self._seed,
            'size' : self._size,
            'fragmentation' : self._fragmentation,
            'board' : encode_board(self._board, None),
            'undo_stack': [encode_board(b,m) for b,m in self._undo_stack],
            'redo_stack': [encode_board(b,m) for b,m in self._redo_stack],
            'win_draw_flag': self._grid.get_win_draw_flag(),
            'win_color': self._grid.get_win_color(),
            'winning_moves' : self._winning_moves
        }

    def set_game_state(self, state):
        # Sets the game state using a dictionary of atomic subobjects.
        self._hide_stuck()
        self._stop_animation()
        def decode_board(state):
            # Decodes a board (and maybe an appended move) from the given state
            # array.
            b = board.Board()
            (w, h) = (state[0], state[1])
            data = state[2:]
            for i in range(h):
                for j in range(w):
                    b.set_value(j, i, data.pop(0))
            if len(data) == 2:
                # Return appended move.
                return b, tuple(data)
            else:
                return b, None
        self._difficulty = state['difficulty']
        self._seed = state['seed']
        self._size = state['size']
        self._fragmentation = state['fragmentation']
        (self._board, dummy) = decode_board(state['board'])
        self._undo_stack = [decode_board(x) for x in state['undo_stack']]
        self._redo_stack = [decode_board(x) for x in state['redo_stack']]
        self._grid.set_board(self._board)
        self._grid.set_win_state(state['win_draw_flag'], state['win_color'])
        if 'winning_moves' in state:
            # Prior to version 8, we didn't store the list of winning moves.
            self._winning_moves = [tuple(x) for x in state['winning_moves']]
        else:
            self._winning_moves = []

        self._check_for_lose_state()

    def _reset_board(self):
        # Regenerates the board with the current seed.
        (self._board, self._winning_moves) = \
                boardgen.generate_board(seed=self._seed,
                                        fragmentation=self._fragmentation,
                                        max_size=self._size)
        self._grid.set_board(self._board)
        self._grid.set_win_draw_flag(False)
        self._undo_stack = []
        self._redo_stack = []

    def _piece_selected_cb(self, widget, x, y):
        # Handles piece selection.

        # We check contiguous before stopping the animation because we don't
        # want a click on the game board in a losing state to stop the "stuck"
        # animation.
        if len(self._board.get_contiguous(x, y)) < 3:
            return

        self._hide_stuck()
        self._stop_animation()
        # We recalc contiguous here because _stop_animation may modify board
        # contents (e.g. the undo-many animation).
        contiguous = self._board.get_contiguous(x, y)
        if len(contiguous) >= 3:
            def remove_func(anim_stopped=False):
                self._remove_contiguous(contiguous, anim_stopped)
            if self._animate:
                self._anim = self._grid.get_removal_anim(self._board,
                                                         contiguous,
                                                         remove_func)
                self._anim.start()
            else:
                remove_func()

    def _undo_key_pressed_cb(self, widget, dummy):
        self.undo()

    def _redo_key_pressed_cb(self, widget, dummy):
        self.redo()

    def _new_key_pressed_cb(self, widget, dummy):
        # Only invoke new command via game pad if board is clear, to prevent
        # terrible accidents.
        if self._board.is_empty():
            self.new_game()

    def _stop_animation(self):
        if self._anim is not None:
            self._anim.stop()

    def _remove_contiguous(self, contiguous, anim_stopped=False):
        # Removes the given set of contiguous blocks from the board.
        self._redo_stack = []
        # We save the player's move as the lexographically smallest coordinate
        # of the piece.
        move = min(contiguous)
        self._undo_stack.append((self._board.clone(), move))
        self._board.clear_pieces(contiguous)
        self._board.drop_pieces()
        self._board.remove_empty_columns()

        # Force board refresh.
        self._grid.set_board(self._board)

        if self._board.is_empty():
            if self._animate and not anim_stopped:
                self._anim = self._grid.get_win_anim(self._init_win)
                self._anim.start()
            else:
                self._init_win()
        else:
            self._check_for_lose_state()

    def _check_for_lose_state(self):
        if not self._board.is_empty():
            all_contiguous = self._board.get_all_contiguous()
            if len(all_contiguous) == 0:
                self._init_lose()

    def _init_win(self, anim_stopped=False):
        self._grid.set_win_draw_flag(True)
        # Clear the undo stack so that the undo/redo buttons do nothing after
        # winning.
        self._undo_stack = []

    def _init_lose(self):
        # If the player is stuck, wait a little while, then signal the activity
        # to display the stuck dialog.
        start_time = time.time()

        def update_func():
            delta = time.time() - start_time
            return (delta <= _STUCK_DELAY)

        def end_anim_func(anim_stopped):
            if not anim_stopped:
                self.emit('show-stuck', 1)

        self._anim = Anim(update_func, end_anim_func)
        self._anim.start()

    def _hide_stuck(self):
        self.emit('show-stuck', 0)