Web   ·   Wiki   ·   Activities   ·   Blog   ·   Lists   ·   Chat   ·   Meeting   ·   Bugs   ·   Git   ·   Translate   ·   Archive   ·   People   ·   Donate
summaryrefslogtreecommitdiffstats
path: root/areaproblem.py
blob: bc3c6ccffe81edc8fcf224f5259cb935a579dee0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
# Copyright 2008 by Peter Moxhay and Wade Brainerd.  
# This file is part of Math.
#
# Math is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# 
# Math is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
# 
# You should have received a copy of the GNU General Public License
# along with Math.  If not, see <http://www.gnu.org/licenses/>.
from objectarea import ObjectArea, Color
from vector import Vector

from shapeobject import ShapeObject
from symbolobject import SymbolObject
from instructionsobject import InstructionsObject
from problem import Problem

import gtk, math, random

class AreaProblem(Problem):
    """
    Generates a problem in which two areas are compared.
    """
    
    def __init__(self, container, color_scheme, (letter1, letter2) ):
        self.container = container
        self.color_scheme = color_scheme
        
        self.letter1 = letter1
        self.letter2 = letter2
        
        self.problem_number = -1
        
        self.generate_problem()
        self.show_problem()
        
        self.answer = self.find_answer()
        
        self.container.moons_visible = False

    def generate_problem(self):     
        # Choose two random colors.
        if self.color_scheme == 'red_green':
            (color1, color2) = random.choice([(Color.RED, Color.GREEN), (Color.GREEN, Color.RED)])
        elif self.color_scheme == 'green_blue':
            (color1, color2) = random.choice([(Color.GREEN, Color.BLUE), (Color.BLUE, Color.GREEN)]) 
        else:
            (color1, color2) = random.choice([(Color.RED, Color.BLUE), (Color.BLUE, Color.RED)])
        
        # Some regular polygons.
        SQUARE_SHAPE = [ Vector(0, 0), Vector(250, 0), Vector(250, 250), Vector(0, 250) ]
        SMALL_SQUARE_SHAPE = self.smaller(SQUARE_SHAPE)
        LARGE_SQUARE_SHAPE = self.larger(SQUARE_SHAPE)     
        
        RECTANGLE_SHAPE = [ Vector(0, 0), Vector(400, 0), Vector(400, 200), Vector(0, 200) ]
        SMALL_RECTANGLE_SHAPE = [ Vector(0, 0), Vector(350, 0), Vector(350, 150), Vector(0, 150) ]
        LARGE_RECTANGLE_SHAPE = [ Vector(0, 0), Vector(450, 0), Vector(450, 250), Vector(0, 250) ]
              
        SMALL_TRIANGLE_SHAPE = [ Vector(0, 0), Vector(250, 0), Vector(0, 250) ]
        TRIANGLE_SHAPE = [ Vector(0, 0), Vector(300, 0), Vector(0, 300) ]
        LARGE_TRIANGLE_SHAPE = [ Vector(0, 0), Vector(350, 0), Vector(0, 350) ]
        
        SMALL_RT_ANGLE_TRAPEZOID_SHAPE = [ Vector(0, 0), Vector(175, 0), Vector(350, 175), Vector(0, 175) ]
        RT_ANGLE_TRAPEZOID_SHAPE = [ Vector(0, 0), Vector(200, 0), Vector(400, 200), Vector(0, 200) ]
        LARGE_RT_ANGLE_TRAPEZOID_SHAPE = [ Vector(0, 0), Vector(225, 0), Vector(450, 225), Vector(0, 225) ]

        SMALL_TRAPEZOID_SHAPE = [ Vector(0, 0), Vector(125, 0), Vector(250, 125), Vector(-125, 125) ]
        TRAPEZOID_SHAPE = [ Vector(0, 0), Vector(150, 0), Vector(300, 150), Vector(-150, 150) ]
        LARGE_TRAPEZOID_SHAPE = [ Vector(0, 0), Vector(175, 0), Vector(350, 175), Vector(-175, 175) ]
        
        SMALL_PARALLELOGRAM_SHAPE = [ Vector(-125, 0), Vector(125, 0), Vector(250, 125), Vector(0, 125) ]
        PARALLELOGRAM_SHAPE = [ Vector(-150, 0), Vector(150, 0), Vector(300, 150), Vector(0, 150) ]
        LARGE_PARALLELOGRAM_SHAPE = [ Vector(-175, 0), Vector(175, 0), Vector(350, 175), Vector(0, 175) ]
        
        # Some irregular polygons.  
        IRREG_TRIANGLE_SHAPE_1 = [Vector(0, -115), Vector(379, -258), Vector(330, 0)]
        SMALL_IRREG_TRIANGLE_SHAPE_1 = self.smaller(IRREG_TRIANGLE_SHAPE_1)
        LARGE_IRREG_TRIANGLE_SHAPE_1 = self.larger(IRREG_TRIANGLE_SHAPE_1)
        
        IRREG_TRIANGLE_SHAPE_2 = [Vector(0, 0), Vector(70, -158), Vector(367, 57)]
        SMALL_IRREG_TRIANGLE_SHAPE_2 = self.smaller(IRREG_TRIANGLE_SHAPE_2)
        LARGE_IRREG_TRIANGLE_SHAPE_2 = self.larger(IRREG_TRIANGLE_SHAPE_2)
        
        IRREG_QUADRIATERAL_SHAPE_1 = [Vector(0, 0), Vector(0, -215), Vector(50, -307), Vector (382, -166)]
        SMALL_IRREG_QUADRIATERAL_SHAPE_1 = self.smaller(IRREG_QUADRIATERAL_SHAPE_1)
        LARGE_IRREG_QUADRIATERAL_SHAPE_1 = self.larger(IRREG_QUADRIATERAL_SHAPE_1)

        IRREG_QUADRIATERAL_SHAPE_2 = [Vector(0, -61), Vector(194, -331), Vector(275, -0), Vector (153, -66)]
        SMALL_IRREG_QUADRIATERAL_SHAPE_2 = self.smaller(IRREG_QUADRIATERAL_SHAPE_2)
        LARGE_IRREG_QUADRIATERAL_SHAPE_2 = self.larger(IRREG_QUADRIATERAL_SHAPE_2)
        
        IRREG_QUADRIATERAL_SHAPE_3 = [Vector(0, -75), Vector(204, -290),Vector(189, -206), Vector(304, -0), Vector (143, -78), Vector (163, -102)]
        
        IRREG_PENTAGON_SHAPE_1 = [Vector(0, -183), Vector(53, -300), Vector(213, -328), Vector (350, -173), Vector (154, 0)]
        SMALL_IRREG_PENTAGON_SHAPE_1 = self.smaller(IRREG_PENTAGON_SHAPE_1)
        LARGE_IRREG_PENTAGON_SHAPE_1 = self.larger(IRREG_PENTAGON_SHAPE_1)

        IRREG_PENTAGON_SHAPE_2 = [Vector(0, -123), Vector(150, -186), Vector(175, -311), Vector (382, -145), Vector (215, 0)]
        SMALL_IRREG_PENTAGON_SHAPE_2 = self.smaller(IRREG_PENTAGON_SHAPE_2)
        LARGE_IRREG_PENTAGON_SHAPE_2 = self.larger(IRREG_PENTAGON_SHAPE_2)

        # Standard initial positions for the shapes.
        upper_left_position = Vector(300, 300)
        lower_right_position = Vector(900, 400)
        upper_right_position = Vector(900, 300)
        lower_left_position = Vector(300, 400)
          
        # Randomize the initial positions of the shapes.
        (original_position1, original_position2) = random.choice([(upper_left_position, lower_right_position), \
            (lower_right_position, upper_left_position), \
            (upper_right_position, lower_left_position), \
            (lower_left_position, upper_right_position)])
        
        # Randomize the initial angles of the shapes.
        (original_angle1, original_angle2) = random.choice( [(0, math.pi/4), (math.pi/4, 0) , \
            (0, math.pi/4), (math.pi/4, 0), (0, math.pi/4), (math.pi/4, 0), (0, 0), (math.pi/2, 0), (0, math.pi/2) ])
        
        # The total number of problems.
        self.n_problems = 30
        
        # Choose a random problem.
        while (self.problem_number in self.container.recently_used):
            self.problem_number = random.randrange(0, self.n_problems)
        
        # Uncomment to test a particular problem.
        #problem_number = 0
        
        # Define the various problems. 
        if self.problem_number == 0:
            object1 = SQUARE_SHAPE
            object2 = LARGE_SQUARE_SHAPE
        elif self.problem_number == 1:
            object1 = SMALL_SQUARE_SHAPE
            object2 = SQUARE_SHAPE
        elif self.problem_number == 2:
            object1 = SQUARE_SHAPE
            object2 = SQUARE_SHAPE
            
        elif self.problem_number == 3:
            object1 = RECTANGLE_SHAPE
            object2 = LARGE_RECTANGLE_SHAPE
        elif self.problem_number == 4:
            object1 = SMALL_RECTANGLE_SHAPE
            object2 = RECTANGLE_SHAPE
        elif self.problem_number == 5:
            object1 = RECTANGLE_SHAPE
            object2 = RECTANGLE_SHAPE
            
        elif self.problem_number == 6:
            object1 = TRIANGLE_SHAPE
            object2 = LARGE_TRIANGLE_SHAPE
        elif self.problem_number == 7:
            object1 = SMALL_TRIANGLE_SHAPE
            object2 = TRIANGLE_SHAPE
        elif self.problem_number == 8:
            object1 = TRIANGLE_SHAPE
            object2 = TRIANGLE_SHAPE
            
        elif self.problem_number == 9:
            object1 = RT_ANGLE_TRAPEZOID_SHAPE
            object2 = LARGE_RT_ANGLE_TRAPEZOID_SHAPE
        elif self.problem_number == 10:
            object1 = SMALL_RT_ANGLE_TRAPEZOID_SHAPE
            object2 = RT_ANGLE_TRAPEZOID_SHAPE
        elif self.problem_number == 11:
            object1 = RT_ANGLE_TRAPEZOID_SHAPE
            object2 = RT_ANGLE_TRAPEZOID_SHAPE
         
        elif self.problem_number == 12:
            object1 = TRAPEZOID_SHAPE
            object2 = LARGE_TRAPEZOID_SHAPE
        elif self.problem_number == 13:
            object1 = SMALL_TRAPEZOID_SHAPE
            object2 = TRAPEZOID_SHAPE
        elif self.problem_number == 14:
            object1 = TRAPEZOID_SHAPE
            object2 = TRAPEZOID_SHAPE
         
        elif self.problem_number == 15:
            object1 = PARALLELOGRAM_SHAPE
            object2 = LARGE_PARALLELOGRAM_SHAPE
        elif self.problem_number == 16:
            object1 = SMALL_PARALLELOGRAM_SHAPE
            object2 = PARALLELOGRAM_SHAPE
        elif self.problem_number == 17:
            object1 = PARALLELOGRAM_SHAPE
            object2 = PARALLELOGRAM_SHAPE
           
        elif self.problem_number == 18:
            object1 = IRREG_TRIANGLE_SHAPE_1
            object2 = LARGE_IRREG_TRIANGLE_SHAPE_1
        elif self.problem_number == 19:
            object1 = SMALL_IRREG_TRIANGLE_SHAPE_1
            object2 = IRREG_TRIANGLE_SHAPE_1
        elif self.problem_number == 20:
            object1 = IRREG_TRIANGLE_SHAPE_1
            object2 = IRREG_TRIANGLE_SHAPE_1
            
        elif self.problem_number == 21:
            object1 = IRREG_QUADRIATERAL_SHAPE_1
            object2 = LARGE_IRREG_QUADRIATERAL_SHAPE_1
        elif self.problem_number == 22:
            object1 = self.smaller(SMALL_SQUARE_SHAPE)
            object2 = self.smaller(SQUARE_SHAPE)
        elif self.problem_number == 23:
            object1 = IRREG_QUADRIATERAL_SHAPE_1
            object2 = IRREG_QUADRIATERAL_SHAPE_1
    
        elif self.problem_number == 24:
            object1 = IRREG_QUADRIATERAL_SHAPE_2
            object2 = LARGE_IRREG_QUADRIATERAL_SHAPE_2
        elif self.problem_number == 25:
            object1 = self.larger(self.larger(IRREG_QUADRIATERAL_SHAPE_2))
            object2 = LARGE_IRREG_QUADRIATERAL_SHAPE_2
        elif self.problem_number == 26:
            object1 = IRREG_QUADRIATERAL_SHAPE_2
            object2 = IRREG_QUADRIATERAL_SHAPE_2
    
        elif self.problem_number == 27:
            object1 = IRREG_PENTAGON_SHAPE_1
            object2 = LARGE_IRREG_PENTAGON_SHAPE_1
        elif self.problem_number == 28:
            object1 = self.larger(LARGE_IRREG_PENTAGON_SHAPE_2)
            object2 = LARGE_IRREG_PENTAGON_SHAPE_2
        elif self.problem_number == 29:
            object1 = IRREG_PENTAGON_SHAPE_1
            object2 = IRREG_PENTAGON_SHAPE_1

        else:
            object1 = SQUARE_SHAPE
            object2 = LARGE_SQUARE_SHAPE
            
        # Switch the shapes half the time (so we get > as well as < problems).
        if random.choice([0,1]) == 0:
            self.shape1 = ShapeObject(color1, self.letter1, object1, original_position1, original_angle1)
            self.shape2 = ShapeObject(color2, self.letter2, object2, original_position2, original_angle2)
        else:
            self.shape1 = ShapeObject(color1, self.letter1, object2, original_position1, original_angle1)
            self.shape2 = ShapeObject(color2, self.letter2, object1, original_position2, original_angle2)
          
        return
    
    def show_problem(self):
        self.container.configure_dragging_area(50, 24, 16, math.pi/4)

        self.container.add_object(self.shape1)
        self.container.add_object(self.shape2)
        
        # Randomize which  object is initially selected.
        if random.choice([0,1]) == 0:
            self.container.select_object(self.shape1)
        else:
            self.container.select_object(self.shape1)
            
        # Add letter symbols.
        self.container.letter1 = SymbolObject(Vector(500 + 400 - 50, 650), self.shape1.symbol, None, None, size=100)
        self.container.letter2 = SymbolObject(Vector(700 + 400 - 50, 650), self.shape2.symbol, None, None, size=100)

        self.container.letter1.draggable = False
        self.container.letter1.selectable = False
        self.container.letter2.draggable = False
        self.container.letter2.selectable = False

        self.container.add_object(self.container.letter1)
        self.container.add_object(self.container.letter2)

        self.container.questionmark = SymbolObject(Vector(600 + 400 - 50, 650), '?', None, None, size=80)
        self.container.questionmark.draggable = False
        self.container.questionmark.selectable = False

        self.container.add_object(self.container.questionmark)

        self.container.instructions = InstructionsObject(Vector(50, 25), 'Compare the things in area')
        self.container.add_object(self.container.instructions)
    
    def scaled(self, vectors, factor):
        for vector in vectors:
            new_vectors = [v.scaled(factor) for v in vectors]
        return new_vectors
    
    def larger(self, vectors):
        for vector in vectors:
            new_vectors = [v.scaled(1.2) for v in vectors]
        return new_vectors
    
    def smaller(self, vectors):
        for vector in vectors:
            new_vectors = [v.scaled(0.8) for v in vectors]
        return new_vectors
    
    def check_problem_solved(self):
        # Make sure the two ShapeObjects have the same number of points.
        if len(self.shape1.points) != len(self.shape2.points):
            return False
        
        # First, test whether the first two ShapeObjects coincide (areas are equal).     
        p0 = self.shape1.points
        p0 = [self.shape1.transform_point(p) for p in p0]

        p1 = self.shape2.points
        p1 = [self.shape2.transform_point(p) for p in p1]
        
        # Sort the points so they can be compared consistently.
        def sort_points_arbitrarily(a, b):
            if a.x != b.x:   
                return cmp(a.x, b.x)
            else:
                return cmp(a.y, b.y)

        p0 = sorted(p0, cmp=sort_points_arbitrarily)
        p1 = sorted(p1, cmp=sort_points_arbitrarily)

        all_equal = True
        for i in range(0,len(p0)):
            if not p0[i].approx_equal(p1[i]):
                all_equal = False

        if all_equal:
            return True

        # Test if one object is completely inside the other (areas are not equal)
        area0 = self.shape1.area
        area1 = self.shape2.area
         
        if area0 > area1:
            object_larger = self.shape1
            p_smaller = p1
        else:
            object_larger = self.shape2
            p_smaller = p0

        for i in range(0,len(self.shape1.points)):
            if not object_larger.contains_point(p_smaller[i]):
                return False
                                 
        return True
    
    def find_answer(self):
        if self.shape1.area > self.shape2.area:
            self.answer = 'greater'
        elif self.shape1.area < self.shape2.area:
            self.answer = 'less'
        else:
            self.answer = 'equal'
        
        return self.answer