Web   ·   Wiki   ·   Activities   ·   Blog   ·   Lists   ·   Chat   ·   Meeting   ·   Bugs   ·   Git   ·   Translate   ·   Archive   ·   People   ·   Donate
summaryrefslogtreecommitdiffstats
path: root/massproblem.py
blob: 449932350a9ca1307eaa1191bfa15faa7ef529a8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
# Copyright 2008 by Peter Moxhay and Wade Brainerd.  
# This file is part of Math.
#
# Math is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# 
# Math is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
# 
# You should have received a copy of the GNU General Public License
# along with Math.  If not, see <http://www.gnu.org/licenses/>.
from objectarea import ObjectArea, Color
from vector import Vector

from threedobject import ThreeDObject
from symbolobject import SymbolObject
from instructionsobject import InstructionsObject
from balanceobject import BalanceObject
from problem import Problem
from vector import Vector

import gtk, math, random

class MassProblem(Problem):
    """
    Generates a problem in which two lengths are compared.
    """
    
    def __init__(self, container, color_scheme, (letter1, letter2) ):
        self.container = container
        self.color_scheme = color_scheme
        
        self.letter1 = letter1
        self.letter2 = letter2
        
        self.problem_number = -1
        
        self.generate_problem()
        self.show_problem()
        
        self.answer = self.find_answer()
        
        self.container.moons_visible = False
 
    def generate_problem(self):     
        # Set the colors.
        if self.color_scheme == 'red_green':
            (color1, color2) = random.choice([(Color.RED, Color.GREEN), (Color.GREEN, Color.RED)])
        elif self.color_scheme == 'green_blue':
            (color1, color2) = random.choice([(Color.GREEN, Color.BLUE), (Color.BLUE, Color.GREEN)]) 
        else:
            (color1, color2) = random.choice([(Color.RED, Color.BLUE), (Color.BLUE, Color.RED)])
        
        # The total number of problems.
        self.n_problems = 9      
        
        # Choose a random problem.
        while (self.problem_number in self.container.recently_used):
            self.problem_number = random.randrange(0, self.n_problems)
        
        # Uncomment to test a particular problem.
        #problem_number = 0
       
        # Define the various problems.
        if self.problem_number == 0:
            size1 = 'short'
            size2 = 'short'
            self.mass1 = 1
            self.mass2 = 2
        elif self.problem_number == 1:
            size1 = 'short'
            size2 = 'short'
            self.mass1 = 2
            self.mass2 = 1
        elif self.problem_number == 2:
            size1 = 'short'
            size2 = 'short'
            self.mass1 = 1
            self.mass2 = 1
            
        elif self.problem_number == 3:
            size1 = 'tall'
            size2 = 'short'
            self.mass1 = 1
            self.mass2 = 2  
        elif self.problem_number == 4:
            size1 = 'tall'
            size2 = 'short'
            self.mass1 = 2
            self.mass2 = 1 
        elif self.problem_number == 5:
            size1 = 'tall'
            size2 = 'short'
            self.mass1 = 1
            self.mass2 = 2
    
        elif self.problem_number == 6:
            size1 = 'tall'
            size2 = 'tall'
            self.mass1 = 1
            self.mass2 = 2  
        elif self.problem_number == 7:
            size1 = 'tall'
            size2 = 'tall'
            self.mass1 = 2
            self.mass2 = 1 
        elif self.problem_number == 8:
            size1 = 'tall'
            size2 = 'tall'
            self.mass1 = 1
            self.mass2 = 2
    
        else:
            size1 = 'short'
            size2 = 'short'
            
        # Initial positions for the shapes.
        
        if size1 == 'short':  
            left_position = Vector(1025, 300 - 200/2)
        else:
            left_position = Vector(1025, 300 - 225/2)
            
        if size2 == 'short':
            right_position = Vector(1025, 575 - 200/2)
        else:
            right_position = Vector(1025, 575 - 225/2)
            
        # Randomize the initial positions of the shapes.
        #(original_position1, original_position2) = random.choice([(left_position, right_position), \
        #    (right_position, left_position)])
        
        (original_position1, original_position2) = (left_position, right_position)
        
        if size1 == 'short':
            points1 = [ Vector(0, 0), Vector(150, 0), Vector(150, 200), Vector(0, 200)]
        else:
            points1 = [ Vector(0, 0), Vector(125, 0), Vector(125, 225), Vector(0, 225)]
            
        if size2 == 'short':
            points2 = [ Vector(0, 0), Vector(150, 0), Vector(150, 200), Vector(0, 200)]
        else:
            points2 = [ Vector(0, 0), Vector(125, 0), Vector(125, 225), Vector(0, 225)]
            
        # Switch the shapes half the time (so we get > as well as < problems).
        if random.choice([0,1]) == 0:
            self.shape1 = ThreeDObject(color1, self.letter1, points1, original_position1, 0.0, mass=self.mass1)
            self.shape2 = ThreeDObject(color2, self.letter2, points2, original_position2, 0.0, mass=self.mass2)
        else:
            self.shape1 = ThreeDObject(color1, self.letter2, points1, original_position1, 0.0, mass=self.mass1)
            self.shape2 = ThreeDObject(color2, self.letter1, points2, original_position2, 0.0, mass=self.mass2)
            
        #self.balance_object = BalanceObject(Vector(100, 100), self.container)
        self.balance_object = BalanceObject(Vector(36, 207), self.container)
        self.container.add_object(self.balance_object)
          
        return
    
    def show_problem(self):
        self.container.configure_dragging_area(25, 48, 32, 2 * math.pi)

        self.container.add_object(self.shape1)
        self.container.add_object(self.shape2)
        
        # Randomize which  object is initially selected.
        if random.choice([0,1]) == 0:
            self.container.select_object(self.shape1)
        else:
            self.container.select_object(self.shape1)
            
        # Add letter symbols.
        self.container.letter1 = SymbolObject(Vector(500 + 400 - 50, 650), self.shape1.symbol, None, None, size=100)
        self.container.letter2 = SymbolObject(Vector(700 + 400 - 50, 650), self.shape2.symbol, None, None, size=100)

        self.container.letter1.draggable = False
        self.container.letter1.selectable = False
        self.container.letter2.draggable = False
        self.container.letter2.selectable = False

        self.container.add_object(self.container.letter1)
        self.container.add_object(self.container.letter2)

        self.container.questionmark = SymbolObject(Vector(600 + 400 - 50, 650), '?', None, None, size=80)
        self.container.questionmark.draggable = False
        self.container.questionmark.selectable = False

        self.container.add_object(self.container.questionmark)

        self.container.instructions = InstructionsObject(Vector(50, 25), 'Compare the things in mass')
        self.container.add_object(self.container.instructions)
        
    def place_objects_in_final_positions(self):
        #print "MassProblem: place_objects_in_final_positions called"
        
        # The final position of the balance.
        x_balance_final = 145
        y_balance_final = 300
        
        if self.balance_object.state == 'left' or self.balance_object.state == 'right':
            y_balance_final = 300
        else:
            y_balance_final = 350
            
        for o in self.container.objects:
            if isinstance(o, BalanceObject):             
                o.amount_scale = 0.65
                o.move(Vector(x_balance_final, y_balance_final))
                
        for o in self.container.objects:
            if isinstance(o, ThreeDObject):             
                o.scale = 0.65
                o.calculate_bounds()
                               
    def finish_problem_stage1(self):
        #print "MassProblem: finish_problem_stage1 called"
        pass
    
    def check_problem_solved(self):
        #print "Mass Problem: check_problem_solved called"
        #print "   shape1 position =", self.shape1.pos
        #print "   shape2 position =", self.shape2.pos
        
        if self.shape1.pos.approx_equal(self.balance_object.pan1_position, tolerance=50):
            #print "   first mass near pan 1"
            if not self.balance_object.left_pan_full:
                self.shape1.pos = self.balance_object.pan1_position
                self.shape1.selected = False
                self.shape1.selectable = False
                self.shape1.draggable = False  
                self.left_pan_object = self.shape1
                self.balance_object.left_pan_full = True
                self.adjust_balance_state()
                
        elif self.shape1.pos.approx_equal(self.balance_object.pan2_position, tolerance=50):
            #print "   first mass near pan 2"
            if not self.balance_object.right_pan_full:
                self.shape1.pos = self.balance_object.pan2_position
                self.shape1.selected = False
                self.shape1.selectable = False
                self.shape1.draggable = False  
                self.right_pan_object = self.shape1
                self.balance_object.right_pan_full = True
                self.adjust_balance_state()
            
        if self.shape2.pos.approx_equal(self.balance_object.pan1_position, tolerance=50):
            #print "   second mass near pan 1"
            if not self.balance_object.left_pan_full:
                self.shape2.pos = self.balance_object.pan1_position
                self.shape2.selected = False
                self.shape2.selectable = False
                self.shape2.draggable = False  
                self.left_pan_object = self.shape2
                self.balance_object.left_pan_full = True
                self.adjust_balance_state()
            
        elif self.shape2.pos.approx_equal(self.balance_object.pan2_position, tolerance=50):
            #print "   second mass near pan 2"
            if not self.balance_object.right_pan_full:
                self.shape2.pos = self.balance_object.pan2_position
                self.shape2.selected = False
                self.shape2.selectable = False
                self.shape2.draggable = False  
                self.right_pan_object = self.shape2
                self.balance_object.right_pan_full = True
                self.adjust_balance_state()
             
        if self.balance_object.left_pan_full and self.balance_object.right_pan_full:
            #print "      returning True"
            self.adjust_balance_state()
            
            self.place_objects_in_final_positions()
            
            return True
    
        #print "      returning False"
        return False
    
    def adjust_balance_state(self):
        if self.balance_object.left_pan_full and not self.balance_object.right_pan_full:
            self.balance_object.state = 'left'
            self.balance_object.pos = Vector(36, 207 - 32)
            self.left_pan_object.pos = Vector(200 + 5, 500 + 68)
        elif not self.balance_object.left_pan_full and self.balance_object.right_pan_full:
            self.balance_object.state = 'right'
            self.balance_object.pos = Vector(36, 207 - 32)
            self.right_pan_object.pos = Vector(725 - 35, 500 + 68)
        elif self.balance_object.left_pan_full and self.balance_object.right_pan_full:
            if self.left_pan_object.mass > self.right_pan_object.mass:
                self.balance_object.state = 'left'
                
                self.left_pan_object.pos = Vector(310, 635 + 55)
                self.right_pan_object.pos = Vector(792, 635 - 75)
                
            elif self.left_pan_object.mass < self.right_pan_object.mass:
                self.balance_object.state = 'right'
                
                self.left_pan_object.pos = Vector(310, 635 - 75)
                self.right_pan_object.pos = Vector(792, 635 + 55)
                
            else:
                self.balance_object.state = 'middle'
                
                self.left_pan_object.pos = Vector(310, 635)
                self.right_pan_object.pos = Vector(792, 635)
                
                self.balance_object.pos = Vector(36, 207)
        
        self.balance_object.adjust_balance_state()
        
        self.shape1.calculate_bounds()
        self.shape2.calculate_bounds()
                
    def find_answer(self):
        if self.shape1.mass > self.shape2.mass:
            self.answer = 'greater'
        elif self.shape1.mass < self.shape2.mass:
            self.answer = 'less'
        else:
            self.answer = 'equal'
        
        return self.answer