Web   ·   Wiki   ·   Activities   ·   Blog   ·   Lists   ·   Chat   ·   Meeting   ·   Bugs   ·   Git   ·   Translate   ·   Archive   ·   People   ·   Donate
summaryrefslogtreecommitdiffstats
path: root/genshi/path.py
blob: 122fbf01d123b7a5df8c7275f896db9fb9d34367 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
# -*- coding: utf-8 -*-
#
# Copyright (C) 2006-2009 Edgewall Software
# All rights reserved.
#
# This software is licensed as described in the file COPYING, which
# you should have received as part of this distribution. The terms
# are also available at http://genshi.edgewall.org/wiki/License.
#
# This software consists of voluntary contributions made by many
# individuals. For the exact contribution history, see the revision
# history and logs, available at http://genshi.edgewall.org/log/.

"""Basic support for evaluating XPath expressions against streams.

>>> from genshi.input import XML
>>> doc = XML('''<doc>
...  <items count="4">
...       <item status="new">
...         <summary>Foo</summary>
...       </item>
...       <item status="closed">
...         <summary>Bar</summary>
...       </item>
...       <item status="closed" resolution="invalid">
...         <summary>Baz</summary>
...       </item>
...       <item status="closed" resolution="fixed">
...         <summary>Waz</summary>
...       </item>
...   </items>
... </doc>''')
>>> print(doc.select('items/item[@status="closed" and '
...     '(@resolution="invalid" or not(@resolution))]/summary/text()'))
BarBaz

Because the XPath engine operates on markup streams (as opposed to tree
structures), it only implements a subset of the full XPath 1.0 language.
"""

from collections import deque
try:
    reduce # builtin in Python < 3
except NameError:
    from functools import reduce
from math import ceil, floor
import operator
import re
from itertools import chain

from genshi.core import Stream, Attrs, Namespace, QName
from genshi.core import START, END, TEXT, START_NS, END_NS, COMMENT, PI, \
                        START_CDATA, END_CDATA

__all__ = ['Path', 'PathSyntaxError']
__docformat__ = 'restructuredtext en'


class Axis(object):
    """Defines constants for the various supported XPath axes."""

    ATTRIBUTE = 'attribute'
    CHILD = 'child'
    DESCENDANT = 'descendant'
    DESCENDANT_OR_SELF = 'descendant-or-self'
    SELF = 'self'

    @classmethod
    def forname(cls, name):
        """Return the axis constant for the given name, or `None` if no such
        axis was defined.
        """
        return getattr(cls, name.upper().replace('-', '_'), None)


ATTRIBUTE = Axis.ATTRIBUTE
CHILD = Axis.CHILD
DESCENDANT = Axis.DESCENDANT
DESCENDANT_OR_SELF = Axis.DESCENDANT_OR_SELF
SELF = Axis.SELF


class GenericStrategy(object):

    @classmethod
    def supports(cls, path):
        return True

    def __init__(self, path):
        self.path = path

    def test(self, ignore_context):
        p = self.path
        if ignore_context:
            if p[0][0] is ATTRIBUTE:
                steps = [_DOTSLASHSLASH] + p
            else:
                steps = [(DESCENDANT_OR_SELF, p[0][1], p[0][2])] + p[1:]
        elif p[0][0] is CHILD or p[0][0] is ATTRIBUTE \
                or p[0][0] is DESCENDANT:
            steps = [_DOTSLASH] + p
        else:
            steps = p

        # for node it contains all positions of xpath expression
        # where its child should start checking for matches
        # with list of corresponding context counters
        # there can be many of them, because position that is from
        # descendant-like axis can be achieved from different nodes
        # for example <a><a><b/></a></a> should match both //a//b[1]
        # and //a//b[2]
        # positions always form increasing sequence (invariant)
        stack = [[(0, [[]])]]

        def _test(event, namespaces, variables, updateonly=False):
            kind, data, pos = event[:3]
            retval = None

            # Manage the stack that tells us "where we are" in the stream
            if kind is END:
                if stack:
                    stack.pop()
                return None
            if kind is START_NS or kind is END_NS \
                    or kind is START_CDATA or kind is END_CDATA:
                # should we make namespaces work?
                return None

            pos_queue = deque([(pos, cou, []) for pos, cou in stack[-1]])
            next_pos = []

            # length of real part of path - we omit attribute axis
            real_len = len(steps) - ((steps[-1][0] == ATTRIBUTE) or 1 and 0)
            last_checked = -1

            # places where we have to check for match, are these
            # provided by parent
            while pos_queue:
                x, pcou, mcou = pos_queue.popleft()
                axis, nodetest, predicates = steps[x]

                # we need to push descendant-like positions from parent
                # further
                if (axis is DESCENDANT or axis is DESCENDANT_OR_SELF) and pcou:
                    if next_pos and next_pos[-1][0] == x:
                        next_pos[-1][1].extend(pcou)
                    else:
                        next_pos.append((x, pcou))

                # nodetest first
                if not nodetest(kind, data, pos, namespaces, variables):
                    continue

                # counters packs that were already bad
                missed = set()
                counters_len = len(pcou) + len(mcou)

                # number of counters - we have to create one
                # for every context position based predicate
                cnum = 0

                # tells if we have match with position x
                matched = True

                if predicates:
                    for predicate in predicates:
                        pretval = predicate(kind, data, pos,
                                            namespaces,
                                            variables)
                        if type(pretval) is float: # FIXME <- need to check
                                                   # this for other types that
                                                   # can be coerced to float

                            # each counter pack needs to be checked
                            for i, cou in enumerate(chain(pcou, mcou)):
                                # it was bad before
                                if i in missed:
                                    continue

                                if len(cou) < cnum + 1:
                                    cou.append(0)
                                cou[cnum] += 1 

                                # it is bad now
                                if cou[cnum] != int(pretval):
                                    missed.add(i)

                            # none of counters pack was good
                            if len(missed) == counters_len:
                                pretval = False
                            cnum += 1

                        if not pretval:
                             matched = False
                             break

                if not matched:
                    continue

                # counter for next position with current node as context node
                child_counter = []

                if x + 1 == real_len:
                    # we reached end of expression, because x + 1
                    # is equal to the length of expression
                    matched = True
                    axis, nodetest, predicates = steps[-1]
                    if axis is ATTRIBUTE:
                        matched = nodetest(kind, data, pos, namespaces,
                                           variables)
                    if matched:
                        retval = matched
                else:
                    next_axis = steps[x + 1][0]

                    # if next axis allows matching self we have
                    # to add next position to our queue
                    if next_axis is DESCENDANT_OR_SELF or next_axis is SELF:
                        if not pos_queue or pos_queue[0][0] > x + 1:
                            pos_queue.appendleft((x + 1, [], [child_counter]))
                        else:
                            pos_queue[0][2].append(child_counter)

                    # if axis is not self we have to add it to child's list
                    if next_axis is not SELF:
                        next_pos.append((x + 1, [child_counter]))

            if kind is START:
                stack.append(next_pos)

            return retval

        return _test


class SimplePathStrategy(object):
    """Strategy for path with only local names, attributes and text nodes."""

    @classmethod
    def supports(cls, path):
        if path[0][0] is ATTRIBUTE:
            return False
        allowed_tests = (LocalNameTest, CommentNodeTest, TextNodeTest)
        for _, nodetest, predicates in path:
            if predicates:
                return False
            if not isinstance(nodetest, allowed_tests):
                return False
        return True

    def __init__(self, path):
        # fragments is list of tuples (fragment, pi, attr, self_beginning)
        # fragment is list of nodetests for fragment of path with only
        # child:: axes between
        # pi is KMP partial match table for this fragment
        # attr is attribute nodetest if fragment ends with @ and None otherwise
        # self_beginning is True if axis for first fragment element
        # was self (first fragment) or descendant-or-self (farther fragment)
        self.fragments = []

        self_beginning = False
        fragment = []

        def nodes_equal(node1, node2):
            """Tests if two node tests are equal"""
            if type(node1) is not type(node2):
                return False
            if type(node1) == LocalNameTest:
                return node1.name == node2.name
            return True

        def calculate_pi(f):
            """KMP prefix calculation for table"""
            # the indexes in prefix table are shifted by one
            # in comparision with common implementations
            # pi[i] = NORMAL_PI[i + 1]
            if len(f) == 0:
                return []
            pi = [0]
            s = 0
            for i in range(1, len(f)):
                while s > 0 and not nodes_equal(f[s], f[i]):
                    s = pi[s-1]
                if nodes_equal(f[s], f[i]):
                    s += 1
                pi.append(s)
            return pi

        for axis in path:
            if axis[0] is SELF:
                if len(fragment) != 0:
                    # if element is not first in fragment it has to be
                    # the same as previous one
                    # for example child::a/self::b is always wrong
                    if axis[1] != fragment[-1][1]:
                        self.fragments = None
                        return
                else:
                    self_beginning = True
                    fragment.append(axis[1])
            elif axis[0] is CHILD:
                fragment.append(axis[1])
            elif axis[0] is ATTRIBUTE:
                pi = calculate_pi(fragment)
                self.fragments.append((fragment, pi, axis[1], self_beginning))
                # attribute has always to be at the end, so we can jump out
                return
            else:
                pi = calculate_pi(fragment)
                self.fragments.append((fragment, pi, None, self_beginning))
                fragment = [axis[1]]
                if axis[0] is DESCENDANT:
                    self_beginning = False
                else: # DESCENDANT_OR_SELF
                    self_beginning = True
        pi = calculate_pi(fragment)
        self.fragments.append((fragment, pi, None, self_beginning))

    def test(self, ignore_context):
        # stack of triples (fid, p, ic)
        # fid is index of current fragment
        # p is position in this fragment
        # ic is if we ignore context in this fragment
        stack = []
        stack_push = stack.append
        stack_pop = stack.pop
        frags = self.fragments
        frags_len = len(frags)

        def _test(event, namespaces, variables, updateonly=False):
            # expression found impossible during init
            if frags is None:
                return None

            kind, data, pos = event[:3]

            # skip events we don't care about
            if kind is END:
                if stack:
                    stack_pop()
                return None
            if kind is START_NS or kind is END_NS \
                    or kind is START_CDATA or kind is END_CDATA:
                return None

            if not stack:
                # root node, nothing on stack, special case
                fid = 0
                # skip empty fragments (there can be actually only one)
                while not frags[fid][0]:
                    fid += 1
                p = 0
                # empty fragment means descendant node at beginning
                ic = ignore_context or (fid > 0)

                # expression can match first node, if first axis is self::,
                # descendant-or-self:: or if ignore_context is True and
                # axis is not descendant::
                if not frags[fid][3] and (not ignore_context or fid > 0):
                    # axis is not self-beggining, we have to skip this node
                    stack_push((fid, p, ic))
                    return None
            else:
                # take position of parent
                fid, p, ic = stack[-1]

            if fid is not None and not ic:
                # fragment not ignoring context - we can't jump back
                frag, pi, attrib, _ = frags[fid]
                frag_len = len(frag)

                if p == frag_len:
                    # that probably means empty first fragment
                    pass
                elif frag[p](kind, data, pos, namespaces, variables):
                    # match, so we can go further
                    p += 1
                else:
                    # not matched, so there will be no match in subtree
                    fid, p = None, None

                if p == frag_len and fid + 1 != frags_len:
                    # we made it to end of fragment, we can go to following
                    fid += 1
                    p = 0
                    ic = True

            if fid is None:
                # there was no match in fragment not ignoring context
                if kind is START:
                    stack_push((fid, p, ic))
                return None

            if ic:
                # we are in fragment ignoring context
                while True:
                    frag, pi, attrib, _ = frags[fid]
                    frag_len = len(frag)

                    # KMP new "character"
                    while p > 0 and (p >= frag_len or not \
                            frag[p](kind, data, pos, namespaces, variables)):
                        p = pi[p-1]
                    if frag[p](kind, data, pos, namespaces, variables):
                        p += 1

                    if p == frag_len:
                        # end of fragment reached
                        if fid + 1 == frags_len:
                            # that was last fragment
                            break
                        else:
                            fid += 1
                            p = 0
                            ic = True
                            if not frags[fid][3]:
                                # next fragment not self-beginning
                                break
                    else:
                        break

            if kind is START:
                # we have to put new position on stack, for children

                if not ic and fid + 1 == frags_len and p == frag_len:
                    # it is end of the only, not context ignoring fragment
                    # so there will be no matches in subtree
                    stack_push((None, None, ic))
                else:
                    stack_push((fid, p, ic))

            # have we reached the end of the last fragment?
            if fid + 1 == frags_len and p == frag_len:
                if attrib: # attribute ended path, return value
                    return attrib(kind, data, pos, namespaces, variables)
                return True

            return None

        return _test


class SingleStepStrategy(object):

    @classmethod
    def supports(cls, path):
        return len(path) == 1

    def __init__(self, path):
        self.path = path

    def test(self, ignore_context):
        steps = self.path
        if steps[0][0] is ATTRIBUTE:
            steps = [_DOTSLASH] + steps
        select_attr = steps[-1][0] is ATTRIBUTE and steps[-1][1] or None

        # for every position in expression stores counters' list
        # it is used for position based predicates
        counters = []
        depth = [0]

        def _test(event, namespaces, variables, updateonly=False):
            kind, data, pos = event[:3]

            # Manage the stack that tells us "where we are" in the stream
            if kind is END:
                if not ignore_context:
                    depth[0] -= 1
                return None
            elif kind is START_NS or kind is END_NS \
                    or kind is START_CDATA or kind is END_CDATA:
                # should we make namespaces work?
                return None

            if not ignore_context:
                outside = (steps[0][0] is SELF and depth[0] != 0) \
                       or (steps[0][0] is CHILD and depth[0] != 1) \
                       or (steps[0][0] is DESCENDANT and depth[0] < 1)
                if kind is START:
                    depth[0] += 1
                if outside:
                    return None

            axis, nodetest, predicates = steps[0]
            if not nodetest(kind, data, pos, namespaces, variables):
                return None

            if predicates:
                cnum = 0
                for predicate in predicates:
                    pretval = predicate(kind, data, pos, namespaces, variables)
                    if type(pretval) is float: # FIXME <- need to check this
                                               # for other types that can be
                                               # coerced to float
                        if len(counters) < cnum + 1:
                            counters.append(0)
                        counters[cnum] += 1 
                        if counters[cnum] != int(pretval):
                            pretval = False
                        cnum += 1
                    if not pretval:
                         return None

            if select_attr:
                return select_attr(kind, data, pos, namespaces, variables)

            return True

        return _test


class Path(object):
    """Implements basic XPath support on streams.
    
    Instances of this class represent a "compiled" XPath expression, and
    provide methods for testing the path against a stream, as well as
    extracting a substream matching that path.
    """

    STRATEGIES = (SingleStepStrategy, SimplePathStrategy, GenericStrategy)

    def __init__(self, text, filename=None, lineno=-1):
        """Create the path object from a string.
        
        :param text: the path expression
        :param filename: the name of the file in which the path expression was
                         found (used in error messages)
        :param lineno: the line on which the expression was found
        """
        self.source = text
        self.paths = PathParser(text, filename, lineno).parse()
        self.strategies = []
        for path in self.paths:
            for strategy_class in self.STRATEGIES:
                if strategy_class.supports(path):
                    self.strategies.append(strategy_class(path))
                    break
            else:
                raise NotImplemented('No strategy found for path')

    def __repr__(self):
        paths = []
        for path in self.paths:
            steps = []
            for axis, nodetest, predicates in path:
                steps.append('%s::%s' % (axis, nodetest))
                for predicate in predicates:
                    steps[-1] += '[%s]' % predicate
            paths.append('/'.join(steps))
        return '<%s "%s">' % (type(self).__name__, '|'.join(paths))

    def select(self, stream, namespaces=None, variables=None):
        """Returns a substream of the given stream that matches the path.
        
        If there are no matches, this method returns an empty stream.
        
        >>> from genshi.input import XML
        >>> xml = XML('<root><elem><child>Text</child></elem></root>')
        
        >>> print(Path('.//child').select(xml))
        <child>Text</child>
        
        >>> print(Path('.//child/text()').select(xml))
        Text
        
        :param stream: the stream to select from
        :param namespaces: (optional) a mapping of namespace prefixes to URIs
        :param variables: (optional) a mapping of variable names to values
        :return: the substream matching the path, or an empty stream
        :rtype: `Stream`
        """
        if namespaces is None:
            namespaces = {}
        if variables is None:
            variables = {}
        stream = iter(stream)
        def _generate(stream=stream, ns=namespaces, vs=variables):
            next = stream.next
            test = self.test()
            for event in stream:
                result = test(event, ns, vs)
                if result is True:
                    yield event
                    if event[0] is START:
                        depth = 1
                        while depth > 0:
                            subevent = next()
                            if subevent[0] is START:
                                depth += 1
                            elif subevent[0] is END:
                                depth -= 1
                            yield subevent
                            test(subevent, ns, vs, updateonly=True)
                elif result:
                    yield result
        return Stream(_generate(),
                      serializer=getattr(stream, 'serializer', None))

    def test(self, ignore_context=False):
        """Returns a function that can be used to track whether the path matches
        a specific stream event.
        
        The function returned expects the positional arguments ``event``,
        ``namespaces`` and ``variables``. The first is a stream event, while the
        latter two are a mapping of namespace prefixes to URIs, and a mapping
        of variable names to values, respectively. In addition, the function
        accepts an ``updateonly`` keyword argument that default to ``False``. If
        it is set to ``True``, the function only updates its internal state,
        but does not perform any tests or return a result.
        
        If the path matches the event, the function returns the match (for
        example, a `START` or `TEXT` event.) Otherwise, it returns ``None``.
        
        >>> from genshi.input import XML
        >>> xml = XML('<root><elem><child id="1"/></elem><child id="2"/></root>')
        >>> test = Path('child').test()
        >>> namespaces, variables = {}, {}
        >>> for event in xml:
        ...     if test(event, namespaces, variables):
        ...         print('%s %r' % (event[0], event[1]))
        START (QName('child'), Attrs([(QName('id'), u'2')]))
        
        :param ignore_context: if `True`, the path is interpreted like a pattern
                               in XSLT, meaning for example that it will match
                               at any depth
        :return: a function that can be used to test individual events in a
                 stream against the path
        :rtype: ``function``
        """
        tests = [s.test(ignore_context) for s in self.strategies]
        if len(tests) == 1:
            return tests[0]

        def _multi(event, namespaces, variables, updateonly=False):
            retval = None
            for test in tests:
                val = test(event, namespaces, variables, updateonly=updateonly)
                if retval is None:
                    retval = val
            return retval
        return _multi


class PathSyntaxError(Exception):
    """Exception raised when an XPath expression is syntactically incorrect."""

    def __init__(self, message, filename=None, lineno=-1, offset=-1):
        if filename:
            message = '%s (%s, line %d)' % (message, filename, lineno)
        Exception.__init__(self, message)
        self.filename = filename
        self.lineno = lineno
        self.offset = offset


class PathParser(object):
    """Tokenizes and parses an XPath expression."""

    _QUOTES = (("'", "'"), ('"', '"'))
    _TOKENS = ('::', ':', '..', '.', '//', '/', '[', ']', '()', '(', ')', '@',
               '=', '!=', '!', '|', ',', '>=', '>', '<=', '<', '$')
    _tokenize = re.compile('("[^"]*")|(\'[^\']*\')|((?:\d+)?\.\d+)|(%s)|([^%s\s]+)|\s+' % (
                           '|'.join([re.escape(t) for t in _TOKENS]),
                           ''.join([re.escape(t[0]) for t in _TOKENS]))).findall

    def __init__(self, text, filename=None, lineno=-1):
        self.filename = filename
        self.lineno = lineno
        self.tokens = [t for t in [dqstr or sqstr or number or token or name
                                   for dqstr, sqstr, number, token, name in
                                   self._tokenize(text)] if t]
        self.pos = 0

    # Tokenizer

    @property
    def at_end(self):
        return self.pos == len(self.tokens) - 1

    @property
    def cur_token(self):
        return self.tokens[self.pos]

    def next_token(self):
        self.pos += 1
        return self.tokens[self.pos]

    def peek_token(self):
        if not self.at_end:
            return self.tokens[self.pos + 1]
        return None

    # Recursive descent parser

    def parse(self):
        """Parses the XPath expression and returns a list of location path
        tests.
        
        For union expressions (such as `*|text()`), this function returns one
        test for each operand in the union. For patch expressions that don't
        use the union operator, the function always returns a list of size 1.
        
        Each path test in turn is a sequence of tests that correspond to the
        location steps, each tuples of the form `(axis, testfunc, predicates)`
        """
        paths = [self._location_path()]
        while self.cur_token == '|':
            self.next_token()
            paths.append(self._location_path())
        if not self.at_end:
            raise PathSyntaxError('Unexpected token %r after end of expression'
                                  % self.cur_token, self.filename, self.lineno)
        return paths

    def _location_path(self):
        steps = []
        while True:
            if self.cur_token.startswith('/'):
                if not steps:
                    if self.cur_token == '//':
                        # hack to make //* match every node - also root
                        self.next_token()
                        axis, nodetest, predicates = self._location_step()
                        steps.append((DESCENDANT_OR_SELF, nodetest, 
                                      predicates))
                        if self.at_end or not self.cur_token.startswith('/'):
                            break
                        continue
                    else:
                        raise PathSyntaxError('Absolute location paths not '
                                              'supported', self.filename,
                                              self.lineno)
                elif self.cur_token == '//':
                    steps.append((DESCENDANT_OR_SELF, NodeTest(), []))
                self.next_token()

            axis, nodetest, predicates = self._location_step()
            if not axis:
                axis = CHILD
            steps.append((axis, nodetest, predicates))
            if self.at_end or not self.cur_token.startswith('/'):
                break

        return steps

    def _location_step(self):
        if self.cur_token == '@':
            axis = ATTRIBUTE
            self.next_token()
        elif self.cur_token == '.':
            axis = SELF
        elif self.cur_token == '..':
            raise PathSyntaxError('Unsupported axis "parent"', self.filename,
                                  self.lineno)
        elif self.peek_token() == '::':
            axis = Axis.forname(self.cur_token)
            if axis is None:
                raise PathSyntaxError('Unsupport axis "%s"' % axis,
                                      self.filename, self.lineno)
            self.next_token()
            self.next_token()
        else:
            axis = None
        nodetest = self._node_test(axis or CHILD)
        predicates = []
        while self.cur_token == '[':
            predicates.append(self._predicate())
        return axis, nodetest, predicates

    def _node_test(self, axis=None):
        test = prefix = None
        next_token = self.peek_token()
        if next_token in ('(', '()'): # Node type test
            test = self._node_type()

        elif next_token == ':': # Namespace prefix
            prefix = self.cur_token
            self.next_token()
            localname = self.next_token()
            if localname == '*':
                test = QualifiedPrincipalTypeTest(axis, prefix)
            else:
                test = QualifiedNameTest(axis, prefix, localname)

        else: # Name test
            if self.cur_token == '*':
                test = PrincipalTypeTest(axis)
            elif self.cur_token == '.':
                test = NodeTest()
            else:
                test = LocalNameTest(axis, self.cur_token)

        if not self.at_end:
            self.next_token()
        return test

    def _node_type(self):
        name = self.cur_token
        self.next_token()

        args = []
        if self.cur_token != '()':
            # The processing-instruction() function optionally accepts the
            # name of the PI as argument, which must be a literal string
            self.next_token() # (
            if self.cur_token != ')':
                string = self.cur_token
                if (string[0], string[-1]) in self._QUOTES:
                    string = string[1:-1]
                args.append(string)

        cls = _nodetest_map.get(name)
        if not cls:
            raise PathSyntaxError('%s() not allowed here' % name, self.filename,
                                  self.lineno)
        return cls(*args)

    def _predicate(self):
        assert self.cur_token == '['
        self.next_token()
        expr = self._or_expr()
        if self.cur_token != ']':
            raise PathSyntaxError('Expected "]" to close predicate, '
                                  'but found "%s"' % self.cur_token,
                                  self.filename, self.lineno)
        if not self.at_end:
            self.next_token()
        return expr

    def _or_expr(self):
        expr = self._and_expr()
        while self.cur_token == 'or':
            self.next_token()
            expr = OrOperator(expr, self._and_expr())
        return expr

    def _and_expr(self):
        expr = self._equality_expr()
        while self.cur_token == 'and':
            self.next_token()
            expr = AndOperator(expr, self._equality_expr())
        return expr

    def _equality_expr(self):
        expr = self._relational_expr()
        while self.cur_token in ('=', '!='):
            op = _operator_map[self.cur_token]
            self.next_token()
            expr = op(expr, self._relational_expr())
        return expr

    def _relational_expr(self):
        expr = self._sub_expr()
        while self.cur_token in ('>', '>=', '<', '>='):
            op = _operator_map[self.cur_token]
            self.next_token()
            expr = op(expr, self._sub_expr())
        return expr

    def _sub_expr(self):
        token = self.cur_token
        if token != '(':
            return self._primary_expr()
        self.next_token()
        expr = self._or_expr()
        if self.cur_token != ')':
            raise PathSyntaxError('Expected ")" to close sub-expression, '
                                  'but found "%s"' % self.cur_token,
                                  self.filename, self.lineno)
        self.next_token()
        return expr

    def _primary_expr(self):
        token = self.cur_token
        if len(token) > 1 and (token[0], token[-1]) in self._QUOTES:
            self.next_token()
            return StringLiteral(token[1:-1])
        elif token[0].isdigit() or token[0] == '.':
            self.next_token()
            return NumberLiteral(as_float(token))
        elif token == '$':
            token = self.next_token()
            self.next_token()
            return VariableReference(token)
        elif not self.at_end and self.peek_token().startswith('('):
            return self._function_call()
        else:
            axis = None
            if token == '@':
                axis = ATTRIBUTE
                self.next_token()
            return self._node_test(axis)

    def _function_call(self):
        name = self.cur_token
        if self.next_token() == '()':
            args = []
        else:
            assert self.cur_token == '('
            self.next_token()
            args = [self._or_expr()]
            while self.cur_token == ',':
                self.next_token()
                args.append(self._or_expr())
            if not self.cur_token == ')':
                raise PathSyntaxError('Expected ")" to close function argument '
                                      'list, but found "%s"' % self.cur_token,
                                      self.filename, self.lineno)
        self.next_token()
        cls = _function_map.get(name)
        if not cls:
            raise PathSyntaxError('Unsupported function "%s"' % name,
                                  self.filename, self.lineno)
        return cls(*args)


# Type coercion

def as_scalar(value):
    """Convert value to a scalar. If a single element Attrs() object is passed
    the value of the single attribute will be returned."""
    if isinstance(value, Attrs):
        assert len(value) == 1
        return value[0][1]
    else:
        return value

def as_float(value):
    # FIXME - if value is a bool it will be coerced to 0.0 and consequently
    # compared as a float. This is probably not ideal.
    return float(as_scalar(value))

def as_long(value):
    return long(as_scalar(value))

def as_string(value):
    value = as_scalar(value)
    if value is False:
        return ''
    return unicode(value)

def as_bool(value):
    return bool(as_scalar(value))


# Node tests

class PrincipalTypeTest(object):
    """Node test that matches any event with the given principal type."""
    __slots__ = ['principal_type']
    def __init__(self, principal_type):
        self.principal_type = principal_type
    def __call__(self, kind, data, pos, namespaces, variables):
        if kind is START:
            if self.principal_type is ATTRIBUTE:
                return data[1] or None
            else:
                return True
    def __repr__(self):
        return '*'

class QualifiedPrincipalTypeTest(object):
    """Node test that matches any event with the given principal type in a
    specific namespace."""
    __slots__ = ['principal_type', 'prefix']
    def __init__(self, principal_type, prefix):
        self.principal_type = principal_type
        self.prefix = prefix
    def __call__(self, kind, data, pos, namespaces, variables):
        namespace = Namespace(namespaces.get(self.prefix))
        if kind is START:
            if self.principal_type is ATTRIBUTE and data[1]:
                return Attrs([(name, value) for name, value in data[1]
                              if name in namespace]) or None
            else:
                return data[0] in namespace
    def __repr__(self):
        return '%s:*' % self.prefix

class LocalNameTest(object):
    """Node test that matches any event with the given principal type and
    local name.
    """
    __slots__ = ['principal_type', 'name']
    def __init__(self, principal_type, name):
        self.principal_type = principal_type
        self.name = name
    def __call__(self, kind, data, pos, namespaces, variables):
        if kind is START:
            if self.principal_type is ATTRIBUTE and self.name in data[1]:
                return Attrs([(self.name, data[1].get(self.name))])
            else:
                return data[0].localname == self.name
    def __repr__(self):
        return self.name

class QualifiedNameTest(object):
    """Node test that matches any event with the given principal type and
    qualified name.
    """
    __slots__ = ['principal_type', 'prefix', 'name']
    def __init__(self, principal_type, prefix, name):
        self.principal_type = principal_type
        self.prefix = prefix
        self.name = name
    def __call__(self, kind, data, pos, namespaces, variables):
        qname = QName('%s}%s' % (namespaces.get(self.prefix), self.name))
        if kind is START:
            if self.principal_type is ATTRIBUTE and qname in data[1]:
                return Attrs([(self.name, data[1].get(self.name))])
            else:
                return data[0] == qname
    def __repr__(self):
        return '%s:%s' % (self.prefix, self.name)

class CommentNodeTest(object):
    """Node test that matches any comment events."""
    __slots__ = []
    def __call__(self, kind, data, pos, namespaces, variables):
        return kind is COMMENT
    def __repr__(self):
        return 'comment()'

class NodeTest(object):
    """Node test that matches any node."""
    __slots__ = []
    def __call__(self, kind, data, pos, namespaces, variables):
        if kind is START:
            return True
        return kind, data, pos
    def __repr__(self):
        return 'node()'

class ProcessingInstructionNodeTest(object):
    """Node test that matches any processing instruction event."""
    __slots__ = ['target']
    def __init__(self, target=None):
        self.target = target
    def __call__(self, kind, data, pos, namespaces, variables):
        return kind is PI and (not self.target or data[0] == self.target)
    def __repr__(self):
        arg = ''
        if self.target:
            arg = '"' + self.target + '"'
        return 'processing-instruction(%s)' % arg

class TextNodeTest(object):
    """Node test that matches any text event."""
    __slots__ = []
    def __call__(self, kind, data, pos, namespaces, variables):
        return kind is TEXT
    def __repr__(self):
        return 'text()'

_nodetest_map = {'comment': CommentNodeTest, 'node': NodeTest,
                 'processing-instruction': ProcessingInstructionNodeTest,
                 'text': TextNodeTest}

# Functions

class Function(object):
    """Base class for function nodes in XPath expressions."""

class BooleanFunction(Function):
    """The `boolean` function, which converts its argument to a boolean
    value.
    """
    __slots__ = ['expr']
    _return_type = bool
    def __init__(self, expr):
        self.expr = expr
    def __call__(self, kind, data, pos, namespaces, variables):
        val = self.expr(kind, data, pos, namespaces, variables)
        return as_bool(val)
    def __repr__(self):
        return 'boolean(%r)' % self.expr

class CeilingFunction(Function):
    """The `ceiling` function, which returns the nearest lower integer number
    for the given number.
    """
    __slots__ = ['number']
    def __init__(self, number):
        self.number = number
    def __call__(self, kind, data, pos, namespaces, variables):
        number = self.number(kind, data, pos, namespaces, variables)
        return ceil(as_float(number))
    def __repr__(self):
        return 'ceiling(%r)' % self.number

class ConcatFunction(Function):
    """The `concat` function, which concatenates (joins) the variable number of
    strings it gets as arguments.
    """
    __slots__ = ['exprs']
    def __init__(self, *exprs):
        self.exprs = exprs
    def __call__(self, kind, data, pos, namespaces, variables):
        strings = []
        for item in [expr(kind, data, pos, namespaces, variables)
                     for expr in self.exprs]:
            strings.append(as_string(item))
        return ''.join(strings)
    def __repr__(self):
        return 'concat(%s)' % ', '.join([repr(expr) for expr in self.exprs])

class ContainsFunction(Function):
    """The `contains` function, which returns whether a string contains a given
    substring.
    """
    __slots__ = ['string1', 'string2']
    def __init__(self, string1, string2):
        self.string1 = string1
        self.string2 = string2
    def __call__(self, kind, data, pos, namespaces, variables):
        string1 = self.string1(kind, data, pos, namespaces, variables)
        string2 = self.string2(kind, data, pos, namespaces, variables)
        return as_string(string2) in as_string(string1)
    def __repr__(self):
        return 'contains(%r, %r)' % (self.string1, self.string2)

class MatchesFunction(Function):
    """The `matches` function, which returns whether a string matches a regular
    expression.
    """
    __slots__ = ['string1', 'string2']
    flag_mapping = {'s': re.S, 'm': re.M, 'i': re.I, 'x': re.X}

    def __init__(self, string1, string2, flags=''):
        self.string1 = string1
        self.string2 = string2
        self.flags = self._map_flags(flags)
    def __call__(self, kind, data, pos, namespaces, variables):
        string1 = as_string(self.string1(kind, data, pos, namespaces, variables))
        string2 = as_string(self.string2(kind, data, pos, namespaces, variables))
        return re.search(string2, string1, self.flags)
    def _map_flags(self, flags):
        return reduce(operator.or_,
                      [self.flag_map[flag] for flag in flags], re.U)
    def __repr__(self):
        return 'contains(%r, %r)' % (self.string1, self.string2)

class FalseFunction(Function):
    """The `false` function, which always returns the boolean `false` value."""
    __slots__ = []
    def __call__(self, kind, data, pos, namespaces, variables):
        return False
    def __repr__(self):
        return 'false()'

class FloorFunction(Function):
    """The `ceiling` function, which returns the nearest higher integer number
    for the given number.
    """
    __slots__ = ['number']
    def __init__(self, number):
        self.number = number
    def __call__(self, kind, data, pos, namespaces, variables):
        number = self.number(kind, data, pos, namespaces, variables)
        return floor(as_float(number))
    def __repr__(self):
        return 'floor(%r)' % self.number

class LocalNameFunction(Function):
    """The `local-name` function, which returns the local name of the current
    element.
    """
    __slots__ = []
    def __call__(self, kind, data, pos, namespaces, variables):
        if kind is START:
            return data[0].localname
    def __repr__(self):
        return 'local-name()'

class NameFunction(Function):
    """The `name` function, which returns the qualified name of the current
    element.
    """
    __slots__ = []
    def __call__(self, kind, data, pos, namespaces, variables):
        if kind is START:
            return data[0]
    def __repr__(self):
        return 'name()'

class NamespaceUriFunction(Function):
    """The `namespace-uri` function, which returns the namespace URI of the
    current element.
    """
    __slots__ = []
    def __call__(self, kind, data, pos, namespaces, variables):
        if kind is START:
            return data[0].namespace
    def __repr__(self):
        return 'namespace-uri()'

class NotFunction(Function):
    """The `not` function, which returns the negated boolean value of its
    argument.
    """
    __slots__ = ['expr']
    def __init__(self, expr):
        self.expr = expr
    def __call__(self, kind, data, pos, namespaces, variables):
        return not as_bool(self.expr(kind, data, pos, namespaces, variables))
    def __repr__(self):
        return 'not(%s)' % self.expr

class NormalizeSpaceFunction(Function):
    """The `normalize-space` function, which removes leading and trailing
    whitespace in the given string, and replaces multiple adjacent whitespace
    characters inside the string with a single space.
    """
    __slots__ = ['expr']
    _normalize = re.compile(r'\s{2,}').sub
    def __init__(self, expr):
        self.expr = expr
    def __call__(self, kind, data, pos, namespaces, variables):
        string = self.expr(kind, data, pos, namespaces, variables)
        return self._normalize(' ', as_string(string).strip())
    def __repr__(self):
        return 'normalize-space(%s)' % repr(self.expr)

class NumberFunction(Function):
    """The `number` function that converts its argument to a number."""
    __slots__ = ['expr']
    def __init__(self, expr):
        self.expr = expr
    def __call__(self, kind, data, pos, namespaces, variables):
        val = self.expr(kind, data, pos, namespaces, variables)
        return as_float(val)
    def __repr__(self):
        return 'number(%r)' % self.expr

class RoundFunction(Function):
    """The `round` function, which returns the nearest integer number for the
    given number.
    """
    __slots__ = ['number']
    def __init__(self, number):
        self.number = number
    def __call__(self, kind, data, pos, namespaces, variables):
        number = self.number(kind, data, pos, namespaces, variables)
        return round(as_float(number))
    def __repr__(self):
        return 'round(%r)' % self.number

class StartsWithFunction(Function):
    """The `starts-with` function that returns whether one string starts with
    a given substring.
    """
    __slots__ = ['string1', 'string2']
    def __init__(self, string1, string2):
        self.string1 = string1
        self.string2 = string2
    def __call__(self, kind, data, pos, namespaces, variables):
        string1 = self.string1(kind, data, pos, namespaces, variables)
        string2 = self.string2(kind, data, pos, namespaces, variables)
        return as_string(string1).startswith(as_string(string2))
    def __repr__(self):
        return 'starts-with(%r, %r)' % (self.string1, self.string2)

class StringLengthFunction(Function):
    """The `string-length` function that returns the length of the given
    string.
    """
    __slots__ = ['expr']
    def __init__(self, expr):
        self.expr = expr
    def __call__(self, kind, data, pos, namespaces, variables):
        string = self.expr(kind, data, pos, namespaces, variables)
        return len(as_string(string))
    def __repr__(self):
        return 'string-length(%r)' % self.expr

class SubstringFunction(Function):
    """The `substring` function that returns the part of a string that starts
    at the given offset, and optionally limited to the given length.
    """
    __slots__ = ['string', 'start', 'length']
    def __init__(self, string, start, length=None):
        self.string = string
        self.start = start
        self.length = length
    def __call__(self, kind, data, pos, namespaces, variables):
        string = self.string(kind, data, pos, namespaces, variables)
        start = self.start(kind, data, pos, namespaces, variables)
        length = 0
        if self.length is not None:
            length = self.length(kind, data, pos, namespaces, variables)
        return string[as_long(start):len(as_string(string)) - as_long(length)]
    def __repr__(self):
        if self.length is not None:
            return 'substring(%r, %r, %r)' % (self.string, self.start,
                                              self.length)
        else:
            return 'substring(%r, %r)' % (self.string, self.start)

class SubstringAfterFunction(Function):
    """The `substring-after` function that returns the part of a string that
    is found after the given substring.
    """
    __slots__ = ['string1', 'string2']
    def __init__(self, string1, string2):
        self.string1 = string1
        self.string2 = string2
    def __call__(self, kind, data, pos, namespaces, variables):
        string1 = as_string(self.string1(kind, data, pos, namespaces, variables))
        string2 = as_string(self.string2(kind, data, pos, namespaces, variables))
        index = string1.find(string2)
        if index >= 0:
            return string1[index + len(string2):]
        return ''
    def __repr__(self):
        return 'substring-after(%r, %r)' % (self.string1, self.string2)

class SubstringBeforeFunction(Function):
    """The `substring-before` function that returns the part of a string that
    is found before the given substring.
    """
    __slots__ = ['string1', 'string2']
    def __init__(self, string1, string2):
        self.string1 = string1
        self.string2 = string2
    def __call__(self, kind, data, pos, namespaces, variables):
        string1 = as_string(self.string1(kind, data, pos, namespaces, variables))
        string2 = as_string(self.string2(kind, data, pos, namespaces, variables))
        index = string1.find(string2)
        if index >= 0:
            return string1[:index]
        return ''
    def __repr__(self):
        return 'substring-after(%r, %r)' % (self.string1, self.string2)

class TranslateFunction(Function):
    """The `translate` function that translates a set of characters in a
    string to target set of characters.
    """
    __slots__ = ['string', 'fromchars', 'tochars']
    def __init__(self, string, fromchars, tochars):
        self.string = string
        self.fromchars = fromchars
        self.tochars = tochars
    def __call__(self, kind, data, pos, namespaces, variables):
        string = as_string(self.string(kind, data, pos, namespaces, variables))
        fromchars = as_string(self.fromchars(kind, data, pos, namespaces, variables))
        tochars = as_string(self.tochars(kind, data, pos, namespaces, variables))
        table = dict(zip([ord(c) for c in fromchars],
                         [ord(c) for c in tochars]))
        return string.translate(table)
    def __repr__(self):
        return 'translate(%r, %r, %r)' % (self.string, self.fromchars,
                                          self.tochars)

class TrueFunction(Function):
    """The `true` function, which always returns the boolean `true` value."""
    __slots__ = []
    def __call__(self, kind, data, pos, namespaces, variables):
        return True
    def __repr__(self):
        return 'true()'

_function_map = {'boolean': BooleanFunction, 'ceiling': CeilingFunction,
                 'concat': ConcatFunction, 'contains': ContainsFunction,
                 'matches': MatchesFunction, 'false': FalseFunction, 'floor':
                 FloorFunction, 'local-name': LocalNameFunction, 'name':
                 NameFunction, 'namespace-uri': NamespaceUriFunction,
                 'normalize-space': NormalizeSpaceFunction, 'not': NotFunction,
                 'number': NumberFunction, 'round': RoundFunction,
                 'starts-with': StartsWithFunction, 'string-length':
                 StringLengthFunction, 'substring': SubstringFunction,
                 'substring-after': SubstringAfterFunction, 'substring-before':
                 SubstringBeforeFunction, 'translate': TranslateFunction,
                 'true': TrueFunction}

# Literals & Variables

class Literal(object):
    """Abstract base class for literal nodes."""

class StringLiteral(Literal):
    """A string literal node."""
    __slots__ = ['text']
    def __init__(self, text):
        self.text = text
    def __call__(self, kind, data, pos, namespaces, variables):
        return self.text
    def __repr__(self):
        return '"%s"' % self.text

class NumberLiteral(Literal):
    """A number literal node."""
    __slots__ = ['number']
    def __init__(self, number):
        self.number = number
    def __call__(self, kind, data, pos, namespaces, variables):
        return self.number
    def __repr__(self):
        return str(self.number)

class VariableReference(Literal):
    """A variable reference node."""
    __slots__ = ['name']
    def __init__(self, name):
        self.name = name
    def __call__(self, kind, data, pos, namespaces, variables):
        return variables.get(self.name)
    def __repr__(self):
        return str(self.name)

# Operators

class AndOperator(object):
    """The boolean operator `and`."""
    __slots__ = ['lval', 'rval']
    def __init__(self, lval, rval):
        self.lval = lval
        self.rval = rval
    def __call__(self, kind, data, pos, namespaces, variables):
        lval = as_bool(self.lval(kind, data, pos, namespaces, variables))
        if not lval:
            return False
        rval = self.rval(kind, data, pos, namespaces, variables)
        return as_bool(rval)
    def __repr__(self):
        return '%s and %s' % (self.lval, self.rval)

class EqualsOperator(object):
    """The equality operator `=`."""
    __slots__ = ['lval', 'rval']
    def __init__(self, lval, rval):
        self.lval = lval
        self.rval = rval
    def __call__(self, kind, data, pos, namespaces, variables):
        lval = as_scalar(self.lval(kind, data, pos, namespaces, variables))
        rval = as_scalar(self.rval(kind, data, pos, namespaces, variables))
        return lval == rval
    def __repr__(self):
        return '%s=%s' % (self.lval, self.rval)

class NotEqualsOperator(object):
    """The equality operator `!=`."""
    __slots__ = ['lval', 'rval']
    def __init__(self, lval, rval):
        self.lval = lval
        self.rval = rval
    def __call__(self, kind, data, pos, namespaces, variables):
        lval = as_scalar(self.lval(kind, data, pos, namespaces, variables))
        rval = as_scalar(self.rval(kind, data, pos, namespaces, variables))
        return lval != rval
    def __repr__(self):
        return '%s!=%s' % (self.lval, self.rval)

class OrOperator(object):
    """The boolean operator `or`."""
    __slots__ = ['lval', 'rval']
    def __init__(self, lval, rval):
        self.lval = lval
        self.rval = rval
    def __call__(self, kind, data, pos, namespaces, variables):
        lval = as_bool(self.lval(kind, data, pos, namespaces, variables))
        if lval:
            return True
        rval = self.rval(kind, data, pos, namespaces, variables)
        return as_bool(rval)
    def __repr__(self):
        return '%s or %s' % (self.lval, self.rval)

class GreaterThanOperator(object):
    """The relational operator `>` (greater than)."""
    __slots__ = ['lval', 'rval']
    def __init__(self, lval, rval):
        self.lval = lval
        self.rval = rval
    def __call__(self, kind, data, pos, namespaces, variables):
        lval = self.lval(kind, data, pos, namespaces, variables)
        rval = self.rval(kind, data, pos, namespaces, variables)
        return as_float(lval) > as_float(rval)
    def __repr__(self):
        return '%s>%s' % (self.lval, self.rval)

class GreaterThanOrEqualOperator(object):
    """The relational operator `>=` (greater than or equal)."""
    __slots__ = ['lval', 'rval']
    def __init__(self, lval, rval):
        self.lval = lval
        self.rval = rval
    def __call__(self, kind, data, pos, namespaces, variables):
        lval = self.lval(kind, data, pos, namespaces, variables)
        rval = self.rval(kind, data, pos, namespaces, variables)
        return as_float(lval) >= as_float(rval)
    def __repr__(self):
        return '%s>=%s' % (self.lval, self.rval)

class LessThanOperator(object):
    """The relational operator `<` (less than)."""
    __slots__ = ['lval', 'rval']
    def __init__(self, lval, rval):
        self.lval = lval
        self.rval = rval
    def __call__(self, kind, data, pos, namespaces, variables):
        lval = self.lval(kind, data, pos, namespaces, variables)
        rval = self.rval(kind, data, pos, namespaces, variables)
        return as_float(lval) < as_float(rval)
    def __repr__(self):
        return '%s<%s' % (self.lval, self.rval)

class LessThanOrEqualOperator(object):
    """The relational operator `<=` (less than or equal)."""
    __slots__ = ['lval', 'rval']
    def __init__(self, lval, rval):
        self.lval = lval
        self.rval = rval
    def __call__(self, kind, data, pos, namespaces, variables):
        lval = self.lval(kind, data, pos, namespaces, variables)
        rval = self.rval(kind, data, pos, namespaces, variables)
        return as_float(lval) <= as_float(rval)
    def __repr__(self):
        return '%s<=%s' % (self.lval, self.rval)

_operator_map = {'=': EqualsOperator, '!=': NotEqualsOperator,
                 '>': GreaterThanOperator, '>=': GreaterThanOrEqualOperator,
                 '<': LessThanOperator, '>=': LessThanOrEqualOperator}


_DOTSLASHSLASH = (DESCENDANT_OR_SELF, PrincipalTypeTest(None), ())
_DOTSLASH = (SELF, PrincipalTypeTest(None), ())