Web   ·   Wiki   ·   Activities   ·   Blog   ·   Lists   ·   Chat   ·   Meeting   ·   Bugs   ·   Git   ·   Translate   ·   Archive   ·   People   ·   Donate
summaryrefslogtreecommitdiffstats
path: root/groupthink/listset.py
blob: cdb25ef60c931583f9f30f170068cb7ae460e583 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
"""
Copyright 2008 Benjamin M. Schwartz

This file is LGPLv2+.

listset.py is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.

DObject is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with DObject.  If not, see <http://www.gnu.org/licenses/>.
"""

import bisect
from collections import defaultdict

"""
dobject_helpers is a collection of functions and data structures that are useful
to DObject, but are not specific to DBus or networked applications.
"""

def merge(a, b, l=True, g=True, e=True):
    """Internal helper function for combining sets represented as sorted lists"""
    x = 0
    X = len(a)
    if X == 0:
        if g:
            return list(b)
        else:
            return []
    y = 0
    Y = len(b)
    if Y == 0:
        if l:
            return list(a)
        else:
            return []
    out = []
    p = a[x]
    q = b[y]
    while x < X and y < Y:
        if p < q:
            if l: out.append(p)
            x += 1
            if x < X: p = a[x]
        elif p > q:
            if g: out.append(q)
            y += 1
            if y < Y: q = b[y]
        else:
            if e: out.append(p)
            x += 1
            if x < X: p = a[x]
            y += 1
            if y < Y: q = b[y]       
    if x < X:
        if l: out.extend(a[x:])
    else:
        if g: out.extend(b[y:])
    return out

def merge_or(a,b):
    return merge(a,b, True, True, True)

def merge_xor(a,b):
    return merge(a, b, True, True, False)

def merge_and(a,b):
    return merge(a, b, False, False, True)

def merge_sub(a,b):
    return merge(a, b, True, False, False)

def kill_dupes(a): #assumes a is sorted
    """Internal helper function for removing duplicates in a sorted list"""
    prev = a[0]
    out = [prev]
    for item in a:
        if item != prev: #always throws out item 0, but that's ok
            out.append(item)
            prev = item
    return out

class Comparable:
    """Currently, ListSet does not provide a mechanism for specifying a
    comparator.  Users who would like to specify a comparator other than the one
    native to the item may do so by wrapping the item in a Comparable.
    """
    def __init__(self, item, comparator):
        self.item = item
        self._cmp = comparator
    
    def __cmp__(self, other):
        return self._cmp(self.item, other)

class ListSet:
    """ListSet is a sorted set for comparable items.  It is inspired by the
    Java Standard Library's TreeSet.  However, it is implemented by a sorted
    list.  This implementation is much slower than a balanced binary tree, but
    has the distinct advantage that I can actually implement it.
    
    The methods of ListSet are all drawn directly from Python's set API,
    Python's list API, and Java's SortedSet API.
    """
    def __init__(self, seq=[]):
        L = list(seq)
        if len(L) > 1:
            L.sort()
            L = kill_dupes(L)
        self._list = L

    def __and__(self, someset):
        if isinstance(someset, ListSet):
            L = merge_and(self._list, someset._list)
        else:
            L = []
            for x in self._list:
                if x in someset:
                    L.append(x)
        a = ListSet()
        a._list = L
        return a
    
    def __contains__(self, item):
        if not self._list:
            return False
        if self._list[0] <= item <= self._list[-1]:
            a = bisect.bisect_left(self._list, item)
            return item == self._list[a]
        else:
            return False
    
    def __eq__(self, someset):
        if isinstance(someset, ListSet):
            return self._list == someset._list
        else:
            return len(self.symmetric_difference(someset)) == 0
    
    def __ge__(self, someset):
        if isinstance(someset, ListSet):
            return len(merge_or(self._list, someset._list)) == len(self._list)
        else:
            a = len(someset)
            k = 0
            for i in self._list:
                if i in someset:
                    k += 1
            return k == a
    
    def __gt__(self, someset):
        return (len(self) > len(someset)) and (self >= someset)

    def __iand__(self, someset):
        if isinstance(someset, ListSet):
            self._list = merge_and(self._list, someset._list)
        else:
            L = []
            for i in self._list:
                if i in someset:
                    L.append(i)
            self._list = L
        return self
    
    def __ior__(self, someset):
        if isinstance(someset, ListSet):
            self._list = merge_or(self._list, someset._list)
        else:
            self.update(someset)
        return self
    
    def __isub__(self, someset):
        if isinstance(someset, ListSet):
            self._list = merge_sub(self._list, someset._list)
        else:
            L = []
            for i in self._list:
                if i not in someset:
                    L.append(i)
            self._list = L
        return self
    
    def __iter__(self):
        return iter(self._list)
    
    def __ixor__(self, someset):
        if isinstance(someset, ListSet):
            self._list = merge_xor(self._list, someset._list)
        else:
            self.symmetric_difference_update(someset)
        return self
    
    def __le__(self, someset):
        if isinstance(someset, ListSet):
            return len(merge_or(self._list, someset._list)) == len(someset._list)
        else:
            for i in self._list:
                if i not in someset:
                   return False
            return True
    
    def __lt__(self, someset):
        return (len(self) < len(someset)) and (self <= someset)
    
    def __ne__(self, someset):
        return not (self == someset)
    
    def __len__(self):
        return len(self._list)
    
    def __nonzero__(self):
        #ugly, but faster than bool(self_list)
        return not not self._list
    
    def __or__(self, someset):
        a = ListSet()
        if isinstance(someset, ListSet):
            a._list = merge_or(self._list, someset._list)
        else:
            a._list = self._list
            a.update(someset)
        return a
    
    __rand__ = __and__
    
    def __repr__(self):
        return "ListSet(" + repr(self._list) +")"
    
    __ror__ = __or__
    
    def __rsub__(self, someset):
        if isinstance(someset, ListSet):
            a = ListSet()
            a._list = merge_sub(someset._list, self._list)
        else:
            a = ListSet(someset)
            a._list = merge_sub(a._list, self._list)
        return a
    
    def __sub__(self, someset):
        a = ListSet()
        if isinstance(someset, ListSet):
            a._list = merge_sub(self._list, someset._list)
        else:
            L = []
            for i in self._list:
                if i not in someset:
                    L.append(i)
            a._list = L
        return a
    
    def __xor__(self, someset):
        if isinstance(someset, ListSet):
            a = ListSet()
            a._list = merge_xor(self._list, someset._list)
        else:
            a = self.symmetric_difference(someset)
        return a
    
    __rxor__ = __xor__
    
    def add(self, item):
        a = bisect.bisect_left(self._list, item)
        if (a == len(self._list)) or (self._list[a] != item):
            self._list.insert(a, item)
    
    def clear(self):
        self._list = []
    
    def copy(self):
        a = ListSet()
        a._list = list(self._list) #shallow copy
        return a
    
    def difference(self, iterable):
        L = list(iterable)
        L.sort()
        a = ListSet()
        a._list = merge_sub(self._list, kill_dupes(L))
        return a
    
    def difference_update(self, iterable):
        L = list(iterable)
        L.sort()
        self._list = merge_sub(self._list, kill_dupes(L))
    
    def discard(self, item):
        if self._list and (item <= self._list[-1]):
            a = bisect.bisect_left(self._list, item)
            if self._list[a] == item:
                self._list.remove(a)
    
    def intersection(self, iterable):
        L = list(iterable)
        L.sort()
        a = ListSet()
        a._list = merge_and(self._list, kill_dupes(L))
    
    def intersection_update(self, iterable):
        L = list(iterable)
        L.sort()
        self._list = merge_and(self._list, kill_dupes(L))
    
    def issuperset(self, iterable):
        L = list(iterable)
        L.sort()
        m = merge_or(self._list, kill_dupes(L))
        return len(m) == len(self._list)
    
    def issubset(self, iterable):
        L = list(iterable)
        L.sort()
        L = kill_dupes(L)
        m = merge_or(self._list, L)
        return len(m) == len(L)
    
    def pop(self, i = None):
        if i == None:
            return self._list.pop()
        else:
            return self._list.pop(i)
        
    def remove(self, item):
        if self._list and (item <= self._list[-1]):
            a = bisect.bisect_left(self._list, item)
            if self._list[a] == item:
                self._list.remove(a)
                return
        raise KeyError("Item is not in the set")
    
    def symmetric_difference(self, iterable):
        L = list(iterable)
        L.sort()
        a = ListSet()
        a._list = merge_xor(self._list, kill_dupes(L))
        return a
    
    def symmetric_difference_update(self, iterable):
        L = list(iterable)
        L.sort()
        self._list = merge_xor(self._list, kill_dupes(L))
    
    def union(self, iterable):
        L = list(iterable)
        L.sort()
        a = ListSet()
        a._list = merge_or(self._list, kill_dupes(L))
    
    def update(self, iterable):
        L = list(iterable)
        L.sort()
        self._list = merge_or(self._list, kill_dupes(L))
    
    def __getitem__(self, key):
        if type(key) is int:
            return self._list[key]
        elif type(key) is slice:
            a = ListSet()
            L = self._list[key]
            if key.step is not None and key.step < 0:
                L.reverse()
            a._list = L
            return a
    
    def __delitem__(self, key):
        del self._list[key]
    
    def index(self, x, i=0, j=-1):
        if self._list and (x <= self._list[-1]):
            a = bisect.bisect_left(self._list, x, i, j)
            if self._list[a] == x:
                return a
        raise ValueError("Item not found")
    
    def position(self, x, i=0, j=-1):
        return bisect.bisect_left(self._list, x, i, j)
    
    def _subrange(self, x, y, includehead=True, includetail=False, i=0, j=-1):
        if includehead:
            a = bisect.bisect_left(self._list, x, i, j)
        else:
            a = bisect.bisect_right(self._list, x, i, j)
        if includetail:
            b = bisect.bisect_right(self._list, y, a, j)
        else:
            b = bisect.bisect_left(self._list, y, a, j)
        return (a, b)
    
    # From Java SortedSet
    def subset(self, x, y, includehead=True, includetail=False, i=0, j=-1):
        (a,b) = self._subrange(x, y, includehead, includetail, i, j)
        s = ListSet()
        s._list = self._list[a:b]
        return s
    
    def iterslice(self, slic):
        L = len(self._list)
        return (self._list[i] for i in xrange(*slic.indices(L)))
    
    def subiter(self, x, y, includehead=True, includetail=False, i=0, j=-1):
        (a,b) = self._subrange(x, y, includehead, includetail, i, j)
        return (self._list[i] for i in xrange(a,b))
    
    def first(self):
        return self._list[0]
    
    def last(self):
        return self._list[-1]
    
    def headset(self, x, include=False, i=0, j=-1):
        if include:
            a = bisect.bisect_right(self._list, x, i, j)
        else:
            a = bisect.bisect_left(self._list, x, i, j)
        return self[:a]
    
    def tailset(self, x, include=True, i=0, j=-1):
        if include:
            a = bisect.bisect_left(self._list, x, i, j)
        else:
            a = bisect.bisect_right(self._list, x, i, j)
        return self[a:]
    
    #From Java's NavigableSet
    def ceiling(self, x, i=0, j=-1):
        a = bisect.bisect_left(self._list, x, i, j)
        return self[a]
    
    def floor(self, x, i=0, j=-1):
        a = bisect.bisect_right(self._list, x, i, j)
        return self[a-1]
    
    def higher(self, x, i=0, j=-1):
        a = bisect.bisect_right(self._list, x, i, j)
        return self[a]
    
    def lower(self, x, i=0, j=-1):
        a = bisect.bisect_left(self._list, x, i, j)
        return self[a-1]

class ListDict:
    """ListDict is a map whose keys are comparable.  It is based on ListSet.
       Its API is drawn from python's defaultdict and Java's SortedMap."""
    def __init__(self, *args, **kwargs):
        self._dict = defaultdict(*args, **kwargs)
        self._set = ListSet(self._dict)
    
    # Dict methods
    
    def __copy__(self):
        return self.copy()
        
    def __repr__(self):
        return 'ListDict({'+', '.join(
                  (': '.join((repr(k), repr(self._dict[k])))
                   for k in self._set))+'})'
    
    def copy(self):
        D = ListDict()
        D._dict = self._dict.copy()
        D._set = self._set.copy()
        return D
    
    def __contains__(self, k):
        return k in self._dict
    
    def __delitem__(self, k):
        del self._dict[k]
        self._set.remove(k)
        
    def __eq__(self, d):
        if isinstance(d, ListDict):
            return self._dict == d._dict
        else:
            return self._dict == d
    
    def __ge__(self, d):
        if isinstance(d, ListDict):
            return self._dict >= d._dict
        else:
            return self._dict >= d
    
    def __getitem__(self, k):
        x = self._dict[k]
        if self._dict.default_factory is not None:
            self._set.add(k)
        return x
            
    def __gt__(self, d):
        if isinstance(d, ListDict):
            return self._dict > d._dict
        else:
            return self._dict > d
    
    def __hash__(self):
        return self._dict.__hash__()
    
    def __iter__():
        return self.iterkeys()
    
    def __le__(self, d):
        if isinstance(d, ListDict):
            return self._dict <= d._dict
        else:
            return self._dict <= d
    
    def __len__(self):
        return len(self._dict)
    
    def __lt__(self, d):
        if isinstance(d, ListDict):
            return self._dict < d._dict
        else:
            return self._dict < d
    
    def __ne__(self, d):
        if isinstance(d, ListDict):
            return self._dict != d._dict
        else:
            return self._dict != d
    
    def __nonzero__(self):
        return not not self._dict
    
    def __setitem__(self, k, v):
        self._dict[k] = v
        self._set.add(k)
    
    def clear(self):
        self._dict.clear()
        self._set.clear()
    
    def get(self, k, d=None):
        return self._dict.get(k, d)
    
    def has_key(self, k):
        return self._dict.has_key(k)
    
    def items(self, *args, **kwargs):
        if not (args or kwargs):
            return [(k, self._dict[k]) for k in self._set]
        else:
            return [(k, self._dict[k]) for k in self._set.subiter(*args, **kwargs)]
    
    def iteritems(self, *args, **kwargs):
        if not (args or kwargs):
            return ((k, self._dict[k]) for k in self._set)
        else:
            return ((k, self._dict[k]) for k in self._set.subiter(*args, **kwargs))
    
    def iterkeys(self, *args, **kwargs):
        if not (args or kwargs):
            return iter(self._set)
        else:
            return self._set.subiter(*args, **kwargs)
    
    def itervalues(self, *args, **kwargs):
        if not (args or kwargs):
            return (self._dict[k] for k in self._set)
        else:
            return (self._dict[k] for k in self._set.subiter(*args, **kwargs))
    
    def keys(self, *args, **kwargs):
        if not (args or kwargs):
            return self._set.copy()
        else:
            return self._set.subset(*args, **kwargs)
    
    def pop(self, *args):
        present = args[0] in self._dict
        v_or_d = self._dict.pop(*args)
        if present:
            self._set.remove(args[0])
        return v_or_d
    
    def popitem(self, i = None):
        if self._dict:
            k = self._set.pop(i)
            return (k, self._dict.pop(k))
        else:
            return self._dict.popitem() # Just to raise the appropriate KeyError
    
    def setdefault(self, k, x=None):
        self._set.add(k)
        return self._dict.setdefault(k, x)
    
    def update(self, E, **F):
        #I'm not sure how to distinguish between dict-like and non-dict-like E
        if isinstance(E, ListDict):
           self._set |= E._set
           self._dict.update(E._dict)
        else:
           try:
               keys = E.keys()
               self._set.update(keys)
               self._dict.update(E)
           except:
               self._dict.update(E,**F)
               self._set.update(self._dict)
    
    def values(self, *args, **kwargs):
        if not (args or kwargs):
            return [self._dict[k] for k in self._set]
        else:
            return [self._dict[k] for k in self._set.subiter(*args, **kwargs)]
    
    def fromkeys(*args):
        return ListDict(dict.fromkeys(*args))
    
    #SortedMap methods
    def firstkey(self):
        return self._set.first()
    
    def lastkey(self):
        return self._set.last()
    
    def headdict(self, k, include=False, i=0, j=-1):
        return self._copysubdict(self._set.headset(k, include, i, j))
    
    def taildict(self, k, include=True, i=0, j=-1):
        return self._copysubdict(self._set.tailset(k, include, i, j))
        
    def subdict(self, fromkey, tokey, 
                      includehead=True, includetail=False, i=0, j=-1):
        return self._copysubdict(self._set.subset(fromkey, tokey, includehead,
                                                   includetail, i, j))

    def _copysubdict(self, s):
        L = ListDict()
        L._set = s
        L._dict.default_factory = self._dict.default_factory
        for k in s:
            L._dict[k] = self._dict[k]
        return L
    
    #NavigableMap methods
    def ceilingkey(self, k):
        return self._set.ceiling(k)
    
    def floorkey(self, k):
        return self._set.floor(k)
    
    def higherkey(self, k):
        return self._set.higher(k)
    
    def lowerkey(self, k):
        return self._set.lower(k)
    
    #ListSet methods
    def index(self, k, i=0, j=-1):
        return self._set.index(k, i, j)
        
    def position(self, k, i=0, j=-1):
        return self._set.position(k, i, j)
    
    def nthkey(self, ind):
        #ind can be an int or a slice
        return self._set[ind]
    
    def nthvalue(self, ind):
        if type(ind) is int:
            return self._dict[self._set[ind]]
        else:
            return [self._dict[k] for k in self._set[ind]]
    
    def nthdict(self, ind):
        s = self._set[ind]
        if type(s) is not ListSet:
            try:
                s = ListSet(s)
            except:
                s = ListSet((s,))
        return self._copysubdict(s)
                
class Overlap1D:
    """Overlap1D is a structure for determining quickly whether two intervals
    overlap."""
    
    def __init__(self):
        # _present is a dict of (position,set(objects)) pairs.  Each key is
        # the leftmost point of an object, and each value is the
        # set of all objects present at that point
        self._present = ListDict()
        # _rightend is a dict of (position,set(objects)).  Each key is the
        # rightmost point of one or more objects, and each value is a set of
        # only those objects that end at this point.
        self._rightend = ListDict(set)
        # _objects is a dict of (object, (left, right)).  It remembers where
        # objects start and stop.
        self._objects = dict()
    
    def add(self, obj, left, right):
        if (not self._present) or left < self._present.firstkey():
            self._present[left] = set((obj,))
        elif left not in self._present:
            # We are adding a new marker to _present.  Start with the nearest
            # marker to the left of the new one.
            prev = self._present[self._present.lowerkey(left)]
            # and keep only the objects that are still present at the new
            # location, i.e. whose rightmost point is further right than
            # the leftmost point of this new object.  We take a closed-left,
            # open-right convention.
            newsetgen = (o for o in prev if self._objects[o][1] > left)
            self._present[left] = set(newsetgen)
        
        intermediates = self._present.itervalues(left, right)
        for s in intermediates:
            # add the object to each set that is inside its interval
            s.add(obj)
        self._objects[obj] = (left,right)
        self._rightend[right].add(obj)
    
    def remove(self, obj):
        (left, right) = self._objects.pop(obj)
        intermediates = self._present.itervalues(left, right)
        for s in intermediates:
            s.remove(obj)
        #boolean tests whether self._present[left] is an empty set()
        if ((not self._present[left]) or
           (self._present[left] <= self._present[self._present.lowerkey(left)])):
            del self._present[left]
        self._rightend[right].remove(obj)
        if not self._rightend[right]:
            del self._rightend[right]
            
    def overlaps(self, left, right, closed = False):
        intermediates = self._present.itervalues(left, right)
        outset = set()
        for s in intermediates:
            outset |= s
            
        if ((left not in self._present) and self._present and
                                             (left > self._present.firstkey())):
            preleft = self._present.floorkey(left)
            prev = self._present[preleft]
            newsetgen = (o for o in prev if self._objects[o][1] > left)
            outset.update(newsetgen)
        if closed:
            if left in self._rightend:
                outset |= self._rightend[left]
            if right in self._present:
                outset |= self.present[right]
        return outset
    
    def collides(self, obj, closed=False):
        (left, right) = self._objects[obj]
        return self.overlaps(left, right, closed)
    
    def get_interval(self, obj):
        return self._objects[obj]

class Overlap2D:
    def __init__(self):
        self._x = Overlap1D()
        self._y = Overlap1D()
    
    def add(self, obj, x1, x2, y1, y2):
        self._x.add(obj, x1, x2)
        self._y.add(obj, y1, y2)
    
    def remove(self, obj):
        self._x.remove(obj)
        self._y.remove(obj)
   
    def overlaps(self, x1, x2, y1, y2, closed = False):
        xset = self._x.overlaps(x1,x2,closed)
        yset = self._y.overlaps(y1,y2,closed)
        return xset & yset
    
    def collides(self, obj, closed = False):
        xset = self._x.collides(obj, closed)
        yset = self._y.collides(obj, closed)
        return xset & yset
    
    def get_rectangle(self, obj):
        (x1, x2) = self._x.get_interval(obj)
        (y1, y2) = self._y.get_interval(obj)
        return (x1, x2, y1, y2)