Web   ·   Wiki   ·   Activities   ·   Blog   ·   Lists   ·   Chat   ·   Meeting   ·   Bugs   ·   Git   ·   Translate   ·   Archive   ·   People   ·   Donate
summaryrefslogtreecommitdiffstats
path: root/lib/png.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/png.py')
-rwxr-xr-xlib/png.py3785
1 files changed, 0 insertions, 3785 deletions
diff --git a/lib/png.py b/lib/png.py
deleted file mode 100755
index 5519407..0000000
--- a/lib/png.py
+++ /dev/null
@@ -1,3785 +0,0 @@
-#!/usr/bin/env python
-
-# $URL: http://pypng.googlecode.com/svn/trunk/code/png.py $
-# $Rev: 228 $
-
-# png.py - PNG encoder/decoder in pure Python
-#
-# Copyright (C) 2006 Johann C. Rocholl <johann@browsershots.org>
-# Portions Copyright (C) 2009 David Jones <drj@pobox.com>
-# And probably portions Copyright (C) 2006 Nicko van Someren <nicko@nicko.org>
-#
-# Original concept by Johann C. Rocholl.
-#
-# LICENSE (The MIT License)
-#
-# Permission is hereby granted, free of charge, to any person
-# obtaining a copy of this software and associated documentation files
-# (the "Software"), to deal in the Software without restriction,
-# including without limitation the rights to use, copy, modify, merge,
-# publish, distribute, sublicense, and/or sell copies of the Software,
-# and to permit persons to whom the Software is furnished to do so,
-# subject to the following conditions:
-#
-# The above copyright notice and this permission notice shall be
-# included in all copies or substantial portions of the Software.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
-# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
-# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
-# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
-# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.
-#
-# Changelog (recent first):
-# 2009-03-11 David: interlaced bit depth < 8 (writing).
-# 2009-03-10 David: interlaced bit depth < 8 (reading).
-# 2009-03-04 David: Flat and Boxed pixel formats.
-# 2009-02-26 David: Palette support (writing).
-# 2009-02-23 David: Bit-depths < 8; better PNM support.
-# 2006-06-17 Nicko: Reworked into a class, faster interlacing.
-# 2006-06-17 Johann: Very simple prototype PNG decoder.
-# 2006-06-17 Nicko: Test suite with various image generators.
-# 2006-06-17 Nicko: Alpha-channel, grey-scale, 16-bit/plane support.
-# 2006-06-15 Johann: Scanline iterator interface for large input files.
-# 2006-06-09 Johann: Very simple prototype PNG encoder.
-
-# Incorporated into Bangai-O Development Tools by drj on 2009-02-11 from
-# http://trac.browsershots.org/browser/trunk/pypng/lib/png.py?rev=2885
-
-# Incorporated into pypng by drj on 2009-03-12 from
-# //depot/prj/bangaio/master/code/png.py#67
-
-
-"""
-Pure Python PNG Reader/Writer
-
-This Python module implements support for PNG images (see PNG
-specification at http://www.w3.org/TR/2003/REC-PNG-20031110/ ). It reads
-and writes PNG files with all allowable bit depths (1/2/4/8/16/24/32/48/64
-bits per pixel) and colour combinations: greyscale (1/2/4/8/16 bit); RGB,
-RGBA, LA (greyscale with alpha) with 8/16 bits per channel; colour mapped
-images (1/2/4/8 bit). Adam7 interlacing is supported for reading and
-writing. A number of optional chunks can be specified (when writing)
-and understood (when reading): ``tRNS``, ``bKGD``, ``gAMA``.
-
-For help, type ``import png; help(png)`` in your python interpreter.
-
-A good place to start is the :class:`Reader` and :class:`Writer` classes.
-
-Requires Python 2.3. Limited support is available for Python 2.2, but
-not everything works. Best with Python 2.4 and higher. Installation is
-trivial, but see the ``README.txt`` file (with the source distribution)
-for details.
-
-This file can also be used as a command-line utility to convert
-`Netpbm <http://netpbm.sourceforge.net/>`_ PNM files to PNG, and the reverse conversion from PNG to
-PNM. The interface is similar to that of the ``pnmtopng`` program from
-Netpbm. Type ``python png.py --help`` at the shell prompt
-for usage and a list of options.
-
-A note on spelling and terminology
-----------------------------------
-
-Generally British English spelling is used in the documentation. So
-that's "greyscale" and "colour". This not only matches the author's
-native language, it's also used by the PNG specification.
-
-The major colour models supported by PNG (and hence by PyPNG) are:
-greyscale, RGB, greyscale--alpha, RGB--alpha. These are sometimes
-referred to using the abbreviations: L, RGB, LA, RGBA. In this case
-each letter abbreviates a single channel: *L* is for Luminance or Luma or
-Lightness which is the channel used in greyscale images; *R*, *G*, *B* stand
-for Red, Green, Blue, the components of a colour image; *A* stands for
-Alpha, the opacity channel (used for transparency effects, but higher
-values are more opaque, so it makes sense to call it opacity).
-
-A note on formats
------------------
-
-When getting pixel data out of this module (reading) and presenting
-data to this module (writing) there are a number of ways the data could
-be represented as a Python value. Generally this module uses one of
-three formats called "flat row flat pixel", "boxed row flat pixel", and
-"boxed row boxed pixel". Basically the concern is whether each pixel
-and each row comes in its own little tuple (box), or not.
-
-Consider an image that is 3 pixels wide by 2 pixels high, and each pixel
-has RGB components:
-
-Boxed row flat pixel::
-
- list([R,G,B, R,G,B, R,G,B],
- [R,G,B, R,G,B, R,G,B])
-
-Each row appears as its own list, but the pixels are flattened so that
-three values for one pixel simply follow the three values for the previous
-pixel. This is the most common format used, because it provides a good
-compromise between space and convenience. PyPNG regards itself as
-at liberty to replace any sequence type with any sufficiently compatible
-other sequence type; in practice each row is an array (from the array
-module), and the outer list is sometimes an iterator rather than an
-explicit list (so that streaming is possible).
-
-Flat row flat pixel::
-
- [R,G,B, R,G,B, R,G,B,
- R,G,B, R,G,B, R,G,B]
-
-The entire image is one single giant sequence of colour values.
-Generally an array will be used (to save space), not a list.
-
-Boxed row boxed pixel::
-
- list([ (R,G,B), (R,G,B), (R,G,B) ],
- [ (R,G,B), (R,G,B), (R,G,B) ])
-
-Each row appears in its own list, but each pixel also appears in its own
-tuple. A serious memory burn in Python.
-
-In all cases the top row comes first, and for each row the pixels are
-ordered from left-to-right. Within a pixel the values appear in the
-order, R-G-B-A (or L-A for greyscale--alpha).
-
-There is a fourth format, mentioned because it is used internally,
-is close to what lies inside a PNG file itself, and has some support
-from the public API. This format is called packed. When packed,
-each row is a sequence of bytes (integers from 0 to 255), just as
-it is before PNG scanline filtering is applied. When the bit depth
-is 8 this is essentially the same as boxed row flat pixel; when the
-bit depth is less than 8, several pixels are packed into each byte;
-when the bit depth is 16 (the only value more than 8 that is supported
-by the PNG image format) each pixel value is decomposed into 2 bytes
-(and `packed` is a misnomer). This format is used by the
-:meth:`Writer.write_packed` method. It isn't usually a convenient
-format, but may be just right if the source data for the PNG image
-comes from something that uses a similar format (for example, 1-bit
-BMPs, or another PNG file).
-
-And now, my famous members
---------------------------
-"""
-
-# http://www.python.org/doc/2.2.3/whatsnew/node5.html
-from __future__ import generators
-
-__version__ = "$URL: http://pypng.googlecode.com/svn/trunk/code/png.py $ $Rev: 228 $"
-
-from array import array
-try: # See :pyver:old
- import itertools
-except:
- pass
-import math
-# http://www.python.org/doc/2.4.4/lib/module-operator.html
-import operator
-import struct
-import sys
-import zlib
-# http://www.python.org/doc/2.4.4/lib/module-warnings.html
-import warnings
-
-
-__all__ = ['Image', 'Reader', 'Writer', 'write_chunks', 'from_array']
-
-
-# The PNG signature.
-# http://www.w3.org/TR/PNG/#5PNG-file-signature
-_signature = struct.pack('8B', 137, 80, 78, 71, 13, 10, 26, 10)
-
-_adam7 = ((0, 0, 8, 8),
- (4, 0, 8, 8),
- (0, 4, 4, 8),
- (2, 0, 4, 4),
- (0, 2, 2, 4),
- (1, 0, 2, 2),
- (0, 1, 1, 2))
-
-def group(s, n):
- # See
- # http://www.python.org/doc/2.6/library/functions.html#zip
- return zip(*[iter(s)]*n)
-
-def isarray(x):
- """Same as ``isinstance(x, array)`` except on Python 2.2, where it
- always returns ``False``. This helps PyPNG work on Python 2.2.
- """
-
- try:
- return isinstance(x, array)
- except:
- return False
-
-try: # see :pyver:old
- array.tostring
-except:
- def tostring(row):
- l = len(row)
- return struct.pack('%dB' % l, *row)
-else:
- def tostring(row):
- """Convert row of bytes to string. Expects `row` to be an
- ``array``.
- """
- return row.tostring()
-
-# Conditionally convert to bytes. Works on Python 2 and Python 3.
-try:
- bytes('', 'ascii')
- def strtobytes(x): return bytes(x, 'iso8859-1')
- def bytestostr(x): return str(x, 'iso8859-1')
-except:
- strtobytes = str
- bytestostr = str
-
-def interleave_planes(ipixels, apixels, ipsize, apsize):
- """
- Interleave (colour) planes, e.g. RGB + A = RGBA.
-
- Return an array of pixels consisting of the `ipsize` elements of data
- from each pixel in `ipixels` followed by the `apsize` elements of data
- from each pixel in `apixels`. Conventionally `ipixels` and
- `apixels` are byte arrays so the sizes are bytes, but it actually
- works with any arrays of the same type. The returned array is the
- same type as the input arrays which should be the same type as each other.
- """
-
- itotal = len(ipixels)
- atotal = len(apixels)
- newtotal = itotal + atotal
- newpsize = ipsize + apsize
- # Set up the output buffer
- # See http://www.python.org/doc/2.4.4/lib/module-array.html#l2h-1356
- out = array(ipixels.typecode)
- # It's annoying that there is no cheap way to set the array size :-(
- out.extend(ipixels)
- out.extend(apixels)
- # Interleave in the pixel data
- for i in range(ipsize):
- out[i:newtotal:newpsize] = ipixels[i:itotal:ipsize]
- for i in range(apsize):
- out[i+ipsize:newtotal:newpsize] = apixels[i:atotal:apsize]
- return out
-
-def check_palette(palette):
- """Check a palette argument (to the :class:`Writer` class) for validity.
- Returns the palette as a list if okay; raises an exception otherwise.
- """
-
- # None is the default and is allowed.
- if palette is None:
- return None
-
- p = list(palette)
- if not (0 < len(p) <= 256):
- raise ValueError("a palette must have between 1 and 256 entries")
- seen_triple = False
- for i,t in enumerate(p):
- if len(t) not in (3,4):
- raise ValueError(
- "palette entry %d: entries must be 3- or 4-tuples." % i)
- if len(t) == 3:
- seen_triple = True
- if seen_triple and len(t) == 4:
- raise ValueError(
- "palette entry %d: all 4-tuples must precede all 3-tuples" % i)
- for x in t:
- if int(x) != x or not(0 <= x <= 255):
- raise ValueError(
- "palette entry %d: values must be integer: 0 <= x <= 255" % i)
- return p
-
-class Error(Exception):
- prefix = 'Error'
- def __str__(self):
- return self.prefix + ': ' + ' '.join(self.args)
-
-class FormatError(Error):
- """Problem with input file format. In other words, PNG file does
- not conform to the specification in some way and is invalid.
- """
-
- prefix = 'FormatError'
-
-class ChunkError(FormatError):
- prefix = 'ChunkError'
-
-
-class Writer:
- """
- PNG encoder in pure Python.
- """
-
- def __init__(self, width=None, height=None,
- size=None,
- greyscale=False,
- alpha=False,
- bitdepth=8,
- palette=None,
- transparent=None,
- background=None,
- gamma=None,
- compression=None,
- interlace=False,
- bytes_per_sample=None, # deprecated
- planes=None,
- colormap=None,
- maxval=None,
- chunk_limit=2**20):
- """
- Create a PNG encoder object.
-
- Arguments:
-
- width, height
- Image size in pixels, as two separate arguments.
- size
- Image size (w,h) in pixels, as single argument.
- greyscale
- Input data is greyscale, not RGB.
- alpha
- Input data has alpha channel (RGBA or LA).
- bitdepth
- Bit depth: from 1 to 16.
- palette
- Create a palette for a colour mapped image (colour type 3).
- transparent
- Specify a transparent colour (create a ``tRNS`` chunk).
- background
- Specify a default background colour (create a ``bKGD`` chunk).
- gamma
- Specify a gamma value (create a ``gAMA`` chunk).
- compression
- zlib compression level (1-9).
- interlace
- Create an interlaced image.
- chunk_limit
- Write multiple ``IDAT`` chunks to save memory.
-
- The image size (in pixels) can be specified either by using the
- `width` and `height` arguments, or with the single `size`
- argument. If `size` is used it should be a pair (*width*,
- *height*).
-
- `greyscale` and `alpha` are booleans that specify whether
- an image is greyscale (or colour), and whether it has an
- alpha channel (or not).
-
- `bitdepth` specifies the bit depth of the source pixel values.
- Each source pixel value must be an integer between 0 and
- ``2**bitdepth-1``. For example, 8-bit images have values
- between 0 and 255. PNG only stores images with bit depths of
- 1,2,4,8, or 16. When `bitdepth` is not one of these values,
- the next highest valid bit depth is selected, and an ``sBIT``
- (significant bits) chunk is generated that specifies the original
- precision of the source image. In this case the supplied pixel
- values will be rescaled to fit the range of the selected bit depth.
-
- The details of which bit depth / colour model combinations the
- PNG file format supports directly, are somewhat arcane
- (refer to the PNG specification for full details). Briefly:
- "small" bit depths (1,2,4) are only allowed with greyscale and
- colour mapped images; colour mapped images cannot have bit depth
- 16.
-
- For colour mapped images (in other words, when the `palette`
- argument is specified) the `bitdepth` argument must match one of
- the valid PNG bit depths: 1, 2, 4, or 8. (It is valid to have a
- PNG image with a palette and an ``sBIT`` chunk, but the meaning
- is slightly different; it would be awkward to press the
- `bitdepth` argument into service for this.)
-
- The `palette` option, when specified, causes a colour mapped image
- to be created: the PNG colour type is set to 3; greyscale
- must not be set; alpha must not be set; transparent must
- not be set; the bit depth must be 1,2,4, or 8. When a colour
- mapped image is created, the pixel values are palette indexes
- and the `bitdepth` argument specifies the size of these indexes
- (not the size of the colour values in the palette).
-
- The palette argument value should be a sequence of 3- or
- 4-tuples. 3-tuples specify RGB palette entries; 4-tuples
- specify RGBA palette entries. If both 4-tuples and 3-tuples
- appear in the sequence then all the 4-tuples must come
- before all the 3-tuples. A ``PLTE`` chunk is created; if there
- are 4-tuples then a ``tRNS`` chunk is created as well. The
- ``PLTE`` chunk will contain all the RGB triples in the same
- sequence; the ``tRNS`` chunk will contain the alpha channel for
- all the 4-tuples, in the same sequence. Palette entries
- are always 8-bit.
-
- If specified, the `transparent` and `background` parameters must
- be a tuple with three integer values for red, green, blue, or
- a simple integer (or singleton tuple) for a greyscale image.
-
- If specified, the `gamma` parameter must be a positive number
- (generally, a float). A ``gAMA`` chunk will be created. Note that
- this will not change the values of the pixels as they appear in
- the PNG file, they are assumed to have already been converted
- appropriately for the gamma specified.
-
- The `compression` argument specifies the compression level
- to be used by the ``zlib`` module. Higher values are likely
- to compress better, but will be slower to compress. The
- default for this argument is ``None``; this does not mean
- no compression, rather it means that the default from the
- ``zlib`` module is used (which is generally acceptable).
-
- If `interlace` is true then an interlaced image is created
- (using PNG's so far only interace method, *Adam7*). This does not
- affect how the pixels should be presented to the encoder, rather
- it changes how they are arranged into the PNG file. On slow
- connexions interlaced images can be partially decoded by the
- browser to give a rough view of the image that is successively
- refined as more image data appears.
-
- .. note ::
-
- Enabling the `interlace` option requires the entire image
- to be processed in working memory.
-
- `chunk_limit` is used to limit the amount of memory used whilst
- compressing the image. In order to avoid using large amounts of
- memory, multiple ``IDAT`` chunks may be created.
- """
-
- # At the moment the `planes` argument is ignored;
- # its purpose is to act as a dummy so that
- # ``Writer(x, y, **info)`` works, where `info` is a dictionary
- # returned by Reader.read and friends.
- # Ditto for `colormap`.
-
- # A couple of helper functions come first. Best skipped if you
- # are reading through.
-
- def isinteger(x):
- try:
- return int(x) == x
- except:
- return False
-
- def check_color(c, which):
- """Checks that a colour argument for transparent or
- background options is the right form. Also "corrects" bare
- integers to 1-tuples.
- """
-
- if c is None:
- return c
- if greyscale:
- try:
- l = len(c)
- except TypeError:
- c = (c,)
- if len(c) != 1:
- raise ValueError("%s for greyscale must be 1-tuple" %
- which)
- if not isinteger(c[0]):
- raise ValueError(
- "%s colour for greyscale must be integer" %
- which)
- else:
- if not (len(c) == 3 and
- isinteger(c[0]) and
- isinteger(c[1]) and
- isinteger(c[2])):
- raise ValueError(
- "%s colour must be a triple of integers" %
- which)
- return c
-
- if size:
- if len(size) != 2:
- raise ValueError(
- "size argument should be a pair (width, height)")
- if width is not None and width != size[0]:
- raise ValueError(
- "size[0] (%r) and width (%r) should match when both are used."
- % (size[0], width))
- if height is not None and height != size[1]:
- raise ValueError(
- "size[1] (%r) and height (%r) should match when both are used."
- % (size[1], height))
- width,height = size
- del size
-
- if width <= 0 or height <= 0:
- raise ValueError("width and height must be greater than zero")
- if not isinteger(width) or not isinteger(height):
- raise ValueError("width and height must be integers")
- # http://www.w3.org/TR/PNG/#7Integers-and-byte-order
- if width > 2**32-1 or height > 2**32-1:
- raise ValueError("width and height cannot exceed 2**32-1")
-
- if alpha and transparent is not None:
- raise ValueError(
- "transparent colour not allowed with alpha channel")
-
- if bytes_per_sample is not None:
- warnings.warn('please use bitdepth instead of bytes_per_sample',
- DeprecationWarning)
- if bytes_per_sample not in (0.125, 0.25, 0.5, 1, 2):
- raise ValueError(
- "bytes per sample must be .125, .25, .5, 1, or 2")
- bitdepth = int(8*bytes_per_sample)
- del bytes_per_sample
- if not isinteger(bitdepth) or bitdepth < 1 or 16 < bitdepth:
- raise ValueError("bitdepth (%r) must be a postive integer <= 16" %
- bitdepth)
-
- self.rescale = None
- if palette:
- if bitdepth not in (1,2,4,8):
- raise ValueError("with palette, bitdepth must be 1, 2, 4, or 8")
- if transparent is not None:
- raise ValueError("transparent and palette not compatible")
- if alpha:
- raise ValueError("alpha and palette not compatible")
- if greyscale:
- raise ValueError("greyscale and palette not compatible")
- else:
- # No palette, check for sBIT chunk generation.
- if alpha or not greyscale:
- if bitdepth not in (8,16):
- targetbitdepth = (8,16)[bitdepth > 8]
- self.rescale = (bitdepth, targetbitdepth)
- bitdepth = targetbitdepth
- del targetbitdepth
- else:
- assert greyscale
- assert not alpha
- if bitdepth not in (1,2,4,8,16):
- if bitdepth > 8:
- targetbitdepth = 16
- elif bitdepth == 3:
- targetbitdepth = 4
- else:
- assert bitdepth in (5,6,7)
- targetbitdepth = 8
- self.rescale = (bitdepth, targetbitdepth)
- bitdepth = targetbitdepth
- del targetbitdepth
-
- if bitdepth < 8 and (alpha or not greyscale and not palette):
- raise ValueError(
- "bitdepth < 8 only permitted with greyscale or palette")
- if bitdepth > 8 and palette:
- raise ValueError(
- "bit depth must be 8 or less for images with palette")
-
- transparent = check_color(transparent, 'transparent')
- background = check_color(background, 'background')
-
- # It's important that the true boolean values (greyscale, alpha,
- # colormap, interlace) are converted to bool because Iverson's
- # convention is relied upon later on.
- self.width = width
- self.height = height
- self.transparent = transparent
- self.background = background
- self.gamma = gamma
- self.greyscale = bool(greyscale)
- self.alpha = bool(alpha)
- self.colormap = bool(palette)
- self.bitdepth = int(bitdepth)
- self.compression = compression
- self.chunk_limit = chunk_limit
- self.interlace = bool(interlace)
- self.palette = check_palette(palette)
-
- self.color_type = 4*self.alpha + 2*(not greyscale) + 1*self.colormap
- assert self.color_type in (0,2,3,4,6)
-
- self.color_planes = (3,1)[self.greyscale or self.colormap]
- self.planes = self.color_planes + self.alpha
- # :todo: fix for bitdepth < 8
- self.psize = (self.bitdepth/8) * self.planes
-
- def make_palette(self):
- """Create the byte sequences for a ``PLTE`` and if necessary a
- ``tRNS`` chunk. Returned as a pair (*p*, *t*). *t* will be
- ``None`` if no ``tRNS`` chunk is necessary.
- """
-
- p = array('B')
- t = array('B')
-
- for x in self.palette:
- p.extend(x[0:3])
- if len(x) > 3:
- t.append(x[3])
- p = tostring(p)
- t = tostring(t)
- if t:
- return p,t
- return p,None
-
- def write(self, outfile, rows):
- """Write a PNG image to the output file. `rows` should be
- an iterable that yields each row in boxed row flat pixel format.
- The rows should be the rows of the original image, so there
- should be ``self.height`` rows of ``self.width * self.planes`` values.
- If `interlace` is specified (when creating the instance), then
- an interlaced PNG file will be written. Supply the rows in the
- normal image order; the interlacing is carried out internally.
-
- .. note ::
-
- Interlacing will require the entire image to be in working memory.
- """
-
- if self.interlace:
- fmt = 'BH'[self.bitdepth > 8]
- a = array(fmt, itertools.chain(*rows))
- return self.write_array(outfile, a)
- else:
- nrows = self.write_passes(outfile, rows)
- if nrows != self.height:
- raise ValueError(
- "rows supplied (%d) does not match height (%d)" %
- (nrows, self.height))
-
- def write_passes(self, outfile, rows, packed=False):
- """
- Write a PNG image to the output file.
-
- Most users are expected to find the :meth:`write` or
- :meth:`write_array` method more convenient.
-
- The rows should be given to this method in the order that
- they appear in the output file. For straightlaced images,
- this is the usual top to bottom ordering, but for interlaced
- images the rows should have already been interlaced before
- passing them to this function.
-
- `rows` should be an iterable that yields each row. When
- `packed` is ``False`` the rows should be in boxed row flat pixel
- format; when `packed` is ``True`` each row should be a packed
- sequence of bytes.
-
- """
-
- # http://www.w3.org/TR/PNG/#5PNG-file-signature
- outfile.write(_signature)
-
- # http://www.w3.org/TR/PNG/#11IHDR
- write_chunk(outfile, 'IHDR',
- struct.pack("!2I5B", self.width, self.height,
- self.bitdepth, self.color_type,
- 0, 0, self.interlace))
-
- # See :chunk:order
- # http://www.w3.org/TR/PNG/#11gAMA
- if self.gamma is not None:
- write_chunk(outfile, 'gAMA',
- struct.pack("!L", int(round(self.gamma*1e5))))
-
- # See :chunk:order
- # http://www.w3.org/TR/PNG/#11sBIT
- if self.rescale:
- write_chunk(outfile, 'sBIT',
- struct.pack('%dB' % self.planes,
- *[self.rescale[0]]*self.planes))
-
- # :chunk:order: Without a palette (PLTE chunk), ordering is
- # relatively relaxed. With one, gAMA chunk must precede PLTE
- # chunk which must precede tRNS and bKGD.
- # See http://www.w3.org/TR/PNG/#5ChunkOrdering
- if self.palette:
- p,t = self.make_palette()
- write_chunk(outfile, 'PLTE', p)
- if t:
- # tRNS chunk is optional. Only needed if palette entries
- # have alpha.
- write_chunk(outfile, 'tRNS', t)
-
- # http://www.w3.org/TR/PNG/#11tRNS
- if self.transparent is not None:
- if self.greyscale:
- write_chunk(outfile, 'tRNS',
- struct.pack("!1H", *self.transparent))
- else:
- write_chunk(outfile, 'tRNS',
- struct.pack("!3H", *self.transparent))
-
- # http://www.w3.org/TR/PNG/#11bKGD
- if self.background is not None:
- if self.greyscale:
- write_chunk(outfile, 'bKGD',
- struct.pack("!1H", *self.background))
- else:
- write_chunk(outfile, 'bKGD',
- struct.pack("!3H", *self.background))
-
- # http://www.w3.org/TR/PNG/#11IDAT
- if self.compression is not None:
- compressor = zlib.compressobj(self.compression)
- else:
- compressor = zlib.compressobj()
-
- # Choose an extend function based on the bitdepth. The extend
- # function packs/decomposes the pixel values into bytes and
- # stuffs them onto the data array.
- data = array('B')
- if self.bitdepth == 8 or packed:
- extend = data.extend
- elif self.bitdepth == 16:
- # Decompose into bytes
- def extend(sl):
- fmt = '!%dH' % len(sl)
- data.extend(array('B', struct.pack(fmt, *sl)))
- else:
- # Pack into bytes
- assert self.bitdepth < 8
- # samples per byte
- spb = int(8/self.bitdepth)
- def extend(sl):
- a = array('B', sl)
- # Adding padding bytes so we can group into a whole
- # number of spb-tuples.
- l = float(len(a))
- extra = math.ceil(l / float(spb))*spb - l
- a.extend([0]*int(extra))
- # Pack into bytes
- l = group(a, spb)
- l = map(lambda e: reduce(lambda x,y:
- (x << self.bitdepth) + y, e), l)
- data.extend(l)
- if self.rescale:
- oldextend = extend
- factor = \
- float(2**self.rescale[1]-1) / float(2**self.rescale[0]-1)
- def extend(sl):
- oldextend(map(lambda x: int(round(factor*x)), sl))
-
- # Build the first row, testing mostly to see if we need to
- # changed the extend function to cope with NumPy integer types
- # (they cause our ordinary definition of extend to fail, so we
- # wrap it). See
- # http://code.google.com/p/pypng/issues/detail?id=44
- enumrows = enumerate(rows)
- del rows
-
- # First row's filter type.
- data.append(0)
- # :todo: Certain exceptions in the call to ``.next()`` or the
- # following try would indicate no row data supplied.
- # Should catch.
- i,row = enumrows.next()
- try:
- # If this fails...
- extend(row)
- except:
- # ... try a version that converts the values to int first.
- # Not only does this work for the (slightly broken) NumPy
- # types, there are probably lots of other, unknown, "nearly"
- # int types it works for.
- def wrapmapint(f):
- return lambda sl: f(map(int, sl))
- extend = wrapmapint(extend)
- del wrapmapint
- extend(row)
-
- for i,row in enumrows:
- # Add "None" filter type. Currently, it's essential that
- # this filter type be used for every scanline as we do not
- # mark the first row of a reduced pass image; that means we
- # could accidentally compute the wrong filtered scanline if
- # we used "up", "average", or "paeth" on such a line.
- data.append(0)
- extend(row)
- if len(data) > self.chunk_limit:
- compressed = compressor.compress(tostring(data))
- if len(compressed):
- # print >> sys.stderr, len(data), len(compressed)
- write_chunk(outfile, 'IDAT', compressed)
- # Because of our very witty definition of ``extend``,
- # above, we must re-use the same ``data`` object. Hence
- # we use ``del`` to empty this one, rather than create a
- # fresh one (which would be my natural FP instinct).
- del data[:]
- if len(data):
- compressed = compressor.compress(tostring(data))
- else:
- compressed = ''
- flushed = compressor.flush()
- if len(compressed) or len(flushed):
- # print >> sys.stderr, len(data), len(compressed), len(flushed)
- write_chunk(outfile, 'IDAT', compressed + flushed)
- # http://www.w3.org/TR/PNG/#11IEND
- write_chunk(outfile, 'IEND')
- return i+1
-
- def write_array(self, outfile, pixels):
- """
- Write an array in flat row flat pixel format as a PNG file on
- the output file. See also :meth:`write` method.
- """
-
- if self.interlace:
- self.write_passes(outfile, self.array_scanlines_interlace(pixels))
- else:
- self.write_passes(outfile, self.array_scanlines(pixels))
-
- def write_packed(self, outfile, rows):
- """
- Write PNG file to `outfile`. The pixel data comes from `rows`
- which should be in boxed row packed format. Each row should be
- a sequence of packed bytes.
-
- Technically, this method does work for interlaced images but it
- is best avoided. For interlaced images, the rows should be
- presented in the order that they appear in the file.
-
- This method should not be used when the source image bit depth
- is not one naturally supported by PNG; the bit depth should be
- 1, 2, 4, 8, or 16.
- """
-
- if self.rescale:
- raise Error("write_packed method not suitable for bit depth %d" %
- self.rescale[0])
- return self.write_passes(outfile, rows, packed=True)
-
- def convert_pnm(self, infile, outfile):
- """
- Convert a PNM file containing raw pixel data into a PNG file
- with the parameters set in the writer object. Works for
- (binary) PGM, PPM, and PAM formats.
- """
-
- if self.interlace:
- pixels = array('B')
- pixels.fromfile(infile,
- (self.bitdepth/8) * self.color_planes *
- self.width * self.height)
- self.write_passes(outfile, self.array_scanlines_interlace(pixels))
- else:
- self.write_passes(outfile, self.file_scanlines(infile))
-
- def convert_ppm_and_pgm(self, ppmfile, pgmfile, outfile):
- """
- Convert a PPM and PGM file containing raw pixel data into a
- PNG outfile with the parameters set in the writer object.
- """
- pixels = array('B')
- pixels.fromfile(ppmfile,
- (self.bitdepth/8) * self.color_planes *
- self.width * self.height)
- apixels = array('B')
- apixels.fromfile(pgmfile,
- (self.bitdepth/8) *
- self.width * self.height)
- pixels = interleave_planes(pixels, apixels,
- (self.bitdepth/8) * self.color_planes,
- (self.bitdepth/8))
- if self.interlace:
- self.write_passes(outfile, self.array_scanlines_interlace(pixels))
- else:
- self.write_passes(outfile, self.array_scanlines(pixels))
-
- def file_scanlines(self, infile):
- """
- Generates boxed rows in flat pixel format, from the input file
- `infile`. It assumes that the input file is in a "Netpbm-like"
- binary format, and is positioned at the beginning of the first
- pixel. The number of pixels to read is taken from the image
- dimensions (`width`, `height`, `planes`) and the number of bytes
- per value is implied by the image `bitdepth`.
- """
-
- # Values per row
- vpr = self.width * self.planes
- row_bytes = vpr
- if self.bitdepth > 8:
- assert self.bitdepth == 16
- row_bytes *= 2
- fmt = '>%dH' % vpr
- def line():
- return array('H', struct.unpack(fmt, infile.read(row_bytes)))
- else:
- def line():
- scanline = array('B', infile.read(row_bytes))
- return scanline
- for y in range(self.height):
- yield line()
-
- def array_scanlines(self, pixels):
- """
- Generates boxed rows (flat pixels) from flat rows (flat pixels)
- in an array.
- """
-
- # Values per row
- vpr = self.width * self.planes
- stop = 0
- for y in range(self.height):
- start = stop
- stop = start + vpr
- yield pixels[start:stop]
-
- def array_scanlines_interlace(self, pixels):
- """
- Generator for interlaced scanlines from an array. `pixels` is
- the full source image in flat row flat pixel format. The
- generator yields each scanline of the reduced passes in turn, in
- boxed row flat pixel format.
- """
-
- # http://www.w3.org/TR/PNG/#8InterlaceMethods
- # Array type.
- fmt = 'BH'[self.bitdepth > 8]
- # Value per row
- vpr = self.width * self.planes
- for xstart, ystart, xstep, ystep in _adam7:
- if xstart >= self.width:
- continue
- # Pixels per row (of reduced image)
- ppr = int(math.ceil((self.width-xstart)/float(xstep)))
- # number of values in reduced image row.
- row_len = ppr*self.planes
- for y in range(ystart, self.height, ystep):
- if xstep == 1:
- offset = y * vpr
- yield pixels[offset:offset+vpr]
- else:
- row = array(fmt)
- # There's no easier way to set the length of an array
- row.extend(pixels[0:row_len])
- offset = y * vpr + xstart * self.planes
- end_offset = (y+1) * vpr
- skip = self.planes * xstep
- for i in range(self.planes):
- row[i::self.planes] = \
- pixels[offset+i:end_offset:skip]
- yield row
-
-def write_chunk(outfile, tag, data=strtobytes('')):
- """
- Write a PNG chunk to the output file, including length and
- checksum.
- """
-
- # http://www.w3.org/TR/PNG/#5Chunk-layout
- outfile.write(struct.pack("!I", len(data)))
- tag = strtobytes(tag)
- outfile.write(tag)
- outfile.write(data)
- checksum = zlib.crc32(tag)
- checksum = zlib.crc32(data, checksum)
- checksum &= 2**32-1
- outfile.write(struct.pack("!I", checksum))
-
-def write_chunks(out, chunks):
- """Create a PNG file by writing out the chunks."""
-
- out.write(_signature)
- for chunk in chunks:
- write_chunk(out, *chunk)
-
-def filter_scanline(type, line, fo, prev=None):
- """Apply a scanline filter to a scanline. `type` specifies the
- filter type (0 to 4); `line` specifies the current (unfiltered)
- scanline as a sequence of bytes; `prev` specifies the previous
- (unfiltered) scanline as a sequence of bytes. `fo` specifies the
- filter offset; normally this is size of a pixel in bytes (the number
- of bytes per sample times the number of channels), but when this is
- < 1 (for bit depths < 8) then the filter offset is 1.
- """
-
- assert 0 <= type < 5
-
- # The output array. Which, pathetically, we extend one-byte at a
- # time (fortunately this is linear).
- out = array('B', [type])
-
- def sub():
- ai = -fo
- for x in line:
- if ai >= 0:
- x = (x - line[ai]) & 0xff
- out.append(x)
- ai += 1
- def up():
- for i,x in enumerate(line):
- x = (x - prev[i]) & 0xff
- out.append(x)
- def average():
- ai = -fo
- for i,x in enumerate(line):
- if ai >= 0:
- x = (x - ((line[ai] + prev[i]) >> 1)) & 0xff
- else:
- x = (x - (prev[i] >> 1)) & 0xff
- out.append(x)
- ai += 1
- def paeth():
- # http://www.w3.org/TR/PNG/#9Filter-type-4-Paeth
- ai = -fo # also used for ci
- for i,x in enumerate(line):
- a = 0
- b = prev[i]
- c = 0
-
- if ai >= 0:
- a = line[ai]
- c = prev[ai]
- p = a + b - c
- pa = abs(p - a)
- pb = abs(p - b)
- pc = abs(p - c)
- if pa <= pb and pa <= pc: Pr = a
- elif pb <= pc: Pr = b
- else: Pr = c
-
- x = (x - Pr) & 0xff
- out.append(x)
- ai += 1
-
- if not prev:
- # We're on the first line. Some of the filters can be reduced
- # to simpler cases which makes handling the line "off the top"
- # of the image simpler. "up" becomes "none"; "paeth" becomes
- # "left" (non-trivial, but true). "average" needs to be handled
- # specially.
- if type == 2: # "up"
- return line # type = 0
- elif type == 3:
- prev = [0]*len(line)
- elif type == 4: # "paeth"
- type = 1
- if type == 0:
- out.extend(line)
- elif type == 1:
- sub()
- elif type == 2:
- up()
- elif type == 3:
- average()
- else: # type == 4
- paeth()
- return out
-
-
-def from_array(a, mode=None, info={}):
- """Create a PNG :class:`Image` object from a 2- or 3-dimensional array.
- One application of this function is easy PIL-style saving:
- ``png.from_array(pixels, 'L').save('foo.png')``.
-
- .. note :
-
- The use of the term *3-dimensional* is for marketing purposes
- only. It doesn't actually work. Please bear with us. Meanwhile
- enjoy the complimentary snacks (on request) and please use a
- 2-dimensional array.
-
- Unless they are specified using the *info* parameter, the PNG's
- height and width are taken from the array size. For a 3 dimensional
- array the first axis is the height; the second axis is the width;
- and the third axis is the channel number. Thus an RGB image that is
- 16 pixels high and 8 wide will use an array that is 16x8x3. For 2
- dimensional arrays the first axis is the height, but the second axis
- is ``width*channels``, so an RGB image that is 16 pixels high and 8
- wide will use a 2-dimensional array that is 16x24 (each row will be
- 8*3==24 sample values).
-
- *mode* is a string that specifies the image colour format in a
- PIL-style mode. It can be:
-
- ``'L'``
- greyscale (1 channel)
- ``'LA'``
- greyscale with alpha (2 channel)
- ``'RGB'``
- colour image (3 channel)
- ``'RGBA'``
- colour image with alpha (4 channel)
-
- The mode string can also specify the bit depth (overriding how this
- function normally derives the bit depth, see below). Appending
- ``';16'`` to the mode will cause the PNG to be 16 bits per channel;
- any decimal from 1 to 16 can be used to specify the bit depth.
-
- When a 2-dimensional array is used *mode* determines how many
- channels the image has, and so allows the width to be derived from
- the second array dimension.
-
- The array is expected to be a ``numpy`` array, but it can be any
- suitable Python sequence. For example, a list of lists can be used:
- ``png.from_array([[0, 255, 0], [255, 0, 255]], 'L')``. The exact
- rules are: ``len(a)`` gives the first dimension, height;
- ``len(a[0])`` gives the second dimension; ``len(a[0][0])`` gives the
- third dimension, unless an exception is raised in which case a
- 2-dimensional array is assumed. It's slightly more complicated than
- that because an iterator of rows can be used, and it all still
- works. Using an iterator allows data to be streamed efficiently.
-
- The bit depth of the PNG is normally taken from the array element's
- datatype (but if *mode* specifies a bitdepth then that is used
- instead). The array element's datatype is determined in a way which
- is supposed to work both for ``numpy`` arrays and for Python
- ``array.array`` objects. A 1 byte datatype will give a bit depth of
- 8, a 2 byte datatype will give a bit depth of 16. If the datatype
- does not have an implicit size, for example it is a plain Python
- list of lists, as above, then a default of 8 is used.
-
- The *info* parameter is a dictionary that can be used to specify
- metadata (in the same style as the arguments to the
- :class:``png.Writer`` class). For this function the keys that are
- useful are:
-
- height
- overrides the height derived from the array dimensions and allows
- *a* to be an iterable.
- width
- overrides the width derived from the array dimensions.
- bitdepth
- overrides the bit depth derived from the element datatype (but
- must match *mode* if that also specifies a bit depth).
-
- Generally anything specified in the
- *info* dictionary will override any implicit choices that this
- function would otherwise make, but must match any explicit ones.
- For example, if the *info* dictionary has a ``greyscale`` key then
- this must be true when mode is ``'L'`` or ``'LA'`` and false when
- mode is ``'RGB'`` or ``'RGBA'``.
- """
-
- # We abuse the *info* parameter by modifying it. Take a copy here.
- # (Also typechecks *info* to some extent).
- info = dict(info)
-
- # Syntax check mode string.
- bitdepth = None
- try:
- mode = mode.split(';')
- if len(mode) not in (1,2):
- raise Error()
- if mode[0] not in ('L', 'LA', 'RGB', 'RGBA'):
- raise Error()
- if len(mode) == 2:
- try:
- bitdepth = int(mode[1])
- except:
- raise Error()
- except Error:
- raise Error("mode string should be 'RGB' or 'L;16' or similar.")
- mode = mode[0]
-
- # Get bitdepth from *mode* if possible.
- if bitdepth:
- if info.get('bitdepth') and bitdepth != info['bitdepth']:
- raise Error("mode bitdepth (%d) should match info bitdepth (%d)." %
- (bitdepth, info['bitdepth']))
- info['bitdepth'] = bitdepth
-
- # Fill in and/or check entries in *info*.
- # Dimensions.
- if 'size' in info:
- # Check width, height, size all match where used.
- for dimension,axis in [('width', 0), ('height', 1)]:
- if dimension in info:
- if info[dimension] != info['size'][axis]:
- raise Error(
- "info[%r] shhould match info['size'][%r]." %
- (dimension, axis))
- info['width'],info['height'] = info['size']
- if 'height' not in info:
- try:
- l = len(a)
- except:
- raise Error(
- "len(a) does not work, supply info['height'] instead.")
- info['height'] = l
- # Colour format.
- if 'greyscale' in info:
- if bool(info['greyscale']) != ('L' in mode):
- raise Error("info['greyscale'] should match mode.")
- info['greyscale'] = 'L' in mode
- if 'alpha' in info:
- if bool(info['alpha']) != ('A' in mode):
- raise Error("info['alpha'] should match mode.")
- info['alpha'] = 'A' in mode
-
- planes = len(mode)
- if 'planes' in info:
- if info['planes'] != planes:
- raise Error("info['planes'] should match mode.")
-
- # In order to work out whether we the array is 2D or 3D we need its
- # first row, which requires that we take a copy of its iterator.
- # We may also need the first row to derive width and bitdepth.
- a,t = itertools.tee(a)
- row = t.next()
- del t
- try:
- row[0][0]
- threed = True
- testelement = row[0]
- except:
- threed = False
- testelement = row
- if 'width' not in info:
- if threed:
- width = len(row)
- else:
- width = len(row) // planes
- info['width'] = width
-
- # Not implemented yet
- assert not threed
-
- if 'bitdepth' not in info:
- try:
- dtype = testelement.dtype
- # goto the "else:" clause. Sorry.
- except:
- try:
- # Try a Python array.array.
- bitdepth = 8 * testelement.itemsize
- except:
- # We can't determine it from the array element's
- # datatype, use a default of 8.
- bitdepth = 8
- else:
- # If we got here without exception, we now assume that
- # the array is a numpy array.
- if dtype.kind == 'b':
- bitdepth = 1
- else:
- bitdepth = 8 * dtype.itemsize
- info['bitdepth'] = bitdepth
-
- for thing in 'width height bitdepth greyscale alpha'.split():
- assert thing in info
- return Image(a, info)
-
-# So that refugee's from PIL feel more at home. Not documented.
-fromarray = from_array
-
-class Image:
- """A PNG image.
- You can create an :class:`Image` object from an array of pixels by calling
- :meth:`png.from_array`. It can be saved to disk with the
- :meth:`save` method."""
- def __init__(self, rows, info):
- """
- .. note ::
-
- The constructor is not public. Please do not call it.
- """
-
- self.rows = rows
- self.info = info
-
- def save(self, file):
- """Save the image to *file*. If *file* looks like an open file
- descriptor then it is used, otherwise it is treated as a
- filename and a fresh file is opened.
-
- In general, you can only call this method once; after it has
- been called the first time and the PNG image has been saved, the
- source data will have been streamed, and cannot be streamed
- again.
- """
-
- w = Writer(**self.info)
-
- try:
- file.write
- def close(): pass
- except:
- file = open(file, 'wb')
- def close(): file.close()
-
- try:
- w.write(file, self.rows)
- finally:
- close()
-
-class _readable:
- """
- A simple file-like interface for strings and arrays.
- """
-
- def __init__(self, buf):
- self.buf = buf
- self.offset = 0
-
- def read(self, n):
- r = self.buf[self.offset:self.offset+n]
- if isarray(r):
- r = r.tostring()
- self.offset += n
- return r
-
-
-class Reader:
- """
- PNG decoder in pure Python.
- """
-
- def __init__(self, _guess=None, **kw):
- """
- Create a PNG decoder object.
-
- The constructor expects exactly one keyword argument. If you
- supply a positional argument instead, it will guess the input
- type. You can choose among the following keyword arguments:
-
- filename
- Name of input file (a PNG file).
- file
- A file-like object (object with a read() method).
- bytes
- ``array`` or ``string`` with PNG data.
-
- """
- if ((_guess is not None and len(kw) != 0) or
- (_guess is None and len(kw) != 1)):
- raise TypeError("Reader() takes exactly 1 argument")
-
- # Will be the first 8 bytes, later on. See validate_signature.
- self.signature = None
- self.transparent = None
- # A pair of (len,type) if a chunk has been read but its data and
- # checksum have not (in other words the file position is just
- # past the 4 bytes that specify the chunk type). See preamble
- # method for how this is used.
- self.atchunk = None
-
- if _guess is not None:
- if isarray(_guess):
- kw["bytes"] = _guess
- elif isinstance(_guess, str):
- kw["filename"] = _guess
- elif isinstance(_guess, file):
- kw["file"] = _guess
-
- if "filename" in kw:
- self.file = open(kw["filename"], "rb")
- elif "file" in kw:
- self.file = kw["file"]
- elif "bytes" in kw:
- self.file = _readable(kw["bytes"])
- else:
- raise TypeError("expecting filename, file or bytes array")
-
- def chunk(self, seek=None):
- """
- Read the next PNG chunk from the input file; returns a
- (*type*,*data*) tuple. *type* is the chunk's type as a string
- (all PNG chunk types are 4 characters long). *data* is the
- chunk's data content, as a string.
-
- If the optional `seek` argument is
- specified then it will keep reading chunks until it either runs
- out of file or finds the type specified by the argument. Note
- that in general the order of chunks in PNGs is unspecified, so
- using `seek` can cause you to miss chunks.
- """
-
- self.validate_signature()
-
- while True:
- # http://www.w3.org/TR/PNG/#5Chunk-layout
- if not self.atchunk:
- self.atchunk = self.chunklentype()
- length,type = self.atchunk
- self.atchunk = None
- data = self.file.read(length)
- if len(data) != length:
- raise ChunkError('Chunk %s too short for required %i octets.'
- % (type, length))
- checksum = self.file.read(4)
- if len(checksum) != 4:
- raise ValueError('Chunk %s too short for checksum.', tag)
- if seek and type != seek:
- continue
- verify = zlib.crc32(strtobytes(type))
- verify = zlib.crc32(data, verify)
- # Whether the output from zlib.crc32 is signed or not varies
- # according to hideous implementation details, see
- # http://bugs.python.org/issue1202 .
- # We coerce it to be positive here (in a way which works on
- # Python 2.3 and older).
- verify &= 2**32 - 1
- verify = struct.pack('!I', verify)
- if checksum != verify:
- # print repr(checksum)
- (a, ) = struct.unpack('!I', checksum)
- (b, ) = struct.unpack('!I', verify)
- raise ChunkError(
- "Checksum error in %s chunk: 0x%08X != 0x%08X." %
- (type, a, b))
- return type, data
-
- def chunks(self):
- """Return an iterator that will yield each chunk as a
- (*chunktype*, *content*) pair.
- """
-
- while True:
- t,v = self.chunk()
- yield t,v
- if t == 'IEND':
- break
-
- def undo_filter(self, filter_type, scanline, previous):
- """Undo the filter for a scanline. `scanline` is a sequence of
- bytes that does not include the initial filter type byte.
- `previous` is decoded previous scanline (for straightlaced
- images this is the previous pixel row, but for interlaced
- images, it is the previous scanline in the reduced image, which
- in general is not the previous pixel row in the final image).
- When there is no previous scanline (the first row of a
- straightlaced image, or the first row in one of the passes in an
- interlaced image), then this argument should be ``None``.
-
- The scanline will have the effects of filtering removed, and the
- result will be returned as a fresh sequence of bytes.
- """
-
- # :todo: Would it be better to update scanline in place?
-
- # Create the result byte array. It seems that the best way to
- # create the array to be the right size is to copy from an
- # existing sequence. *sigh*
- # If we fill the result with scanline, then this allows a
- # micro-optimisation in the "null" and "sub" cases.
- result = array('B', scanline)
-
- if filter_type == 0:
- # And here, we _rely_ on filling the result with scanline,
- # above.
- return result
-
- if filter_type not in (1,2,3,4):
- raise FormatError('Invalid PNG Filter Type.'
- ' See http://www.w3.org/TR/2003/REC-PNG-20031110/#9Filters .')
-
- # Filter unit. The stride from one pixel to the corresponding
- # byte from the previous previous. Normally this is the pixel
- # size in bytes, but when this is smaller than 1, the previous
- # byte is used instead.
- fu = max(1, self.psize)
-
- # For the first line of a pass, synthesize a dummy previous
- # line. An alternative approach would be to observe that on the
- # first line 'up' is the same as 'null', 'paeth' is the same
- # as 'sub', with only 'average' requiring any special case.
- if not previous:
- previous = array('B', [0]*len(scanline))
-
- def sub():
- """Undo sub filter."""
-
- ai = 0
- # Loops starts at index fu. Observe that the initial part
- # of the result is already filled in correctly with
- # scanline.
- for i in range(fu, len(result)):
- x = scanline[i]
- a = result[ai]
- result[i] = (x + a) & 0xff
- ai += 1
-
- def up():
- """Undo up filter."""
-
- for i in range(len(result)):
- x = scanline[i]
- b = previous[i]
- result[i] = (x + b) & 0xff
-
- def average():
- """Undo average filter."""
-
- ai = -fu
- for i in range(len(result)):
- x = scanline[i]
- if ai < 0:
- a = 0
- else:
- a = result[ai]
- b = previous[i]
- result[i] = (x + ((a + b) >> 1)) & 0xff
- ai += 1
-
- def paeth():
- """Undo Paeth filter."""
-
- # Also used for ci.
- ai = -fu
- for i in range(len(result)):
- x = scanline[i]
- if ai < 0:
- a = c = 0
- else:
- a = result[ai]
- c = previous[ai]
- b = previous[i]
- p = a + b - c
- pa = abs(p - a)
- pb = abs(p - b)
- pc = abs(p - c)
- if pa <= pb and pa <= pc:
- pr = a
- elif pb <= pc:
- pr = b
- else:
- pr = c
- result[i] = (x + pr) & 0xff
- ai += 1
-
- # Call appropriate filter algorithm. Note that 0 has already
- # been dealt with.
- (None, sub, up, average, paeth)[filter_type]()
- return result
-
- def deinterlace(self, raw):
- """
- Read raw pixel data, undo filters, deinterlace, and flatten.
- Return in flat row flat pixel format.
- """
-
- # print >> sys.stderr, ("Reading interlaced, w=%s, r=%s, planes=%s," +
- # " bpp=%s") % (self.width, self.height, self.planes, self.bps)
- # Values per row (of the target image)
- vpr = self.width * self.planes
-
- # Make a result array, and make it big enough. Interleaving
- # writes to the output array randomly (well, not quite), so the
- # entire output array must be in memory.
- fmt = 'BH'[self.bitdepth > 8]
- a = array(fmt, [0]*vpr*self.height)
- source_offset = 0
-
- for xstart, ystart, xstep, ystep in _adam7:
- # print >> sys.stderr, "Adam7: start=%s,%s step=%s,%s" % (
- # xstart, ystart, xstep, ystep)
- if xstart >= self.width:
- continue
- # The previous (reconstructed) scanline. None at the
- # beginning of a pass to indicate that there is no previous
- # line.
- recon = None
- # Pixels per row (reduced pass image)
- ppr = int(math.ceil((self.width-xstart)/float(xstep)))
- # Row size in bytes for this pass.
- row_size = int(math.ceil(self.psize * ppr))
- for y in range(ystart, self.height, ystep):
- filter_type = raw[source_offset]
- source_offset += 1
- scanline = raw[source_offset:source_offset+row_size]
- source_offset += row_size
- recon = self.undo_filter(filter_type, scanline, recon)
- # Convert so that there is one element per pixel value
- flat = self.serialtoflat(recon, ppr)
- if xstep == 1:
- assert xstart == 0
- offset = y * vpr
- a[offset:offset+vpr] = flat
- else:
- offset = y * vpr + xstart * self.planes
- end_offset = (y+1) * vpr
- skip = self.planes * xstep
- for i in range(self.planes):
- a[offset+i:end_offset:skip] = \
- flat[i::self.planes]
- return a
-
- def iterboxed(self, rows):
- """Iterator that yields each scanline in boxed row flat pixel
- format. `rows` should be an iterator that yields the bytes of
- each row in turn.
- """
-
- def asvalues(raw):
- """Convert a row of raw bytes into a flat row. Result may
- or may not share with argument"""
-
- if self.bitdepth == 8:
- return raw
- if self.bitdepth == 16:
- raw = tostring(raw)
- return array('H', struct.unpack('!%dH' % (len(raw)//2), raw))
- assert self.bitdepth < 8
- width = self.width
- # Samples per byte
- spb = 8//self.bitdepth
- out = array('B')
- mask = 2**self.bitdepth - 1
- shifts = map(self.bitdepth.__mul__, reversed(range(spb)))
- for o in raw:
- out.extend(map(lambda i: mask&(o>>i), shifts))
- return out[:width]
-
- return itertools.imap(asvalues, rows)
-
- def serialtoflat(self, bytes, width=None):
- """Convert serial format (byte stream) pixel data to flat row
- flat pixel.
- """
-
- if self.bitdepth == 8:
- return bytes
- if self.bitdepth == 16:
- bytes = tostring(bytes)
- return array('H',
- struct.unpack('!%dH' % (len(bytes)//2), bytes))
- assert self.bitdepth < 8
- if width is None:
- width = self.width
- # Samples per byte
- spb = 8//self.bitdepth
- out = array('B')
- mask = 2**self.bitdepth - 1
- shifts = map(self.bitdepth.__mul__, reversed(range(spb)))
- l = width
- for o in bytes:
- out.extend([(mask&(o>>s)) for s in shifts][:l])
- l -= spb
- if l <= 0:
- l = width
- return out
-
- def iterstraight(self, raw):
- """Iterator that undoes the effect of filtering, and yields each
- row in serialised format (as a sequence of bytes). Assumes input
- is straightlaced. `raw` should be an iterable that yields the
- raw bytes in chunks of arbitrary size."""
-
- # length of row, in bytes
- rb = self.row_bytes
- a = array('B')
- # The previous (reconstructed) scanline. None indicates first
- # line of image.
- recon = None
- for some in raw:
- a.extend(some)
- while len(a) >= rb + 1:
- filter_type = a[0]
- scanline = a[1:rb+1]
- del a[:rb+1]
- recon = self.undo_filter(filter_type, scanline, recon)
- yield recon
- if len(a) != 0:
- # :file:format We get here with a file format error: when the
- # available bytes (after decompressing) do not pack into exact
- # rows.
- raise FormatError(
- 'Wrong size for decompressed IDAT chunk.')
- assert len(a) == 0
-
- def validate_signature(self):
- """If signature (header) has not been read then read and
- validate it; otherwise do nothing.
- """
-
- if self.signature:
- return
- self.signature = self.file.read(8)
- if self.signature != _signature:
- raise FormatError("PNG file has invalid signature.")
-
- def preamble(self):
- """
- Extract the image metadata by reading the initial part of the PNG
- file up to the start of the ``IDAT`` chunk. All the chunks that
- precede the ``IDAT`` chunk are read and either processed for
- metadata or discarded.
- """
-
- self.validate_signature()
-
- while True:
- if not self.atchunk:
- self.atchunk = self.chunklentype()
- if self.atchunk is None:
- raise FormatError(
- 'This PNG file has no IDAT chunks.')
- if self.atchunk[1] == 'IDAT':
- return
- self.process_chunk()
-
- def chunklentype(self):
- """Reads just enough of the input to determine the next
- chunk's length and type, returned as a (*length*, *type*) pair
- where *type* is a string. If there are no more chunks, ``None``
- is returned.
- """
-
- x = self.file.read(8)
- if not x:
- return None
- if len(x) != 8:
- raise FormatError(
- 'End of file whilst reading chunk length and type.')
- length,type = struct.unpack('!I4s', x)
- type = bytestostr(type)
- if length > 2**31-1:
- raise FormatError('Chunk %s is too large: %d.' % (type,length))
- return length,type
-
- def process_chunk(self):
- """Process the next chunk and its data. This only processes the
- following chunk types, all others are ignored: ``IHDR``,
- ``PLTE``, ``bKGD``, ``tRNS``, ``gAMA``, ``sBIT``.
- """
-
- type, data = self.chunk()
- if type == 'IHDR':
- # http://www.w3.org/TR/PNG/#11IHDR
- if len(data) != 13:
- raise FormatError('IHDR chunk has incorrect length.')
- (self.width, self.height, self.bitdepth, self.color_type,
- self.compression, self.filter,
- self.interlace) = struct.unpack("!2I5B", data)
-
- # Check that the header specifies only valid combinations.
- if self.bitdepth not in (1,2,4,8,16):
- raise Error("invalid bit depth %d" % self.bitdepth)
- if self.color_type not in (0,2,3,4,6):
- raise Error("invalid colour type %d" % self.color_type)
- # Check indexed (palettized) images have 8 or fewer bits
- # per pixel; check only indexed or greyscale images have
- # fewer than 8 bits per pixel.
- if ((self.color_type & 1 and self.bitdepth > 8) or
- (self.bitdepth < 8 and self.color_type not in (0,3))):
- raise FormatError("Illegal combination of bit depth (%d)"
- " and colour type (%d)."
- " See http://www.w3.org/TR/2003/REC-PNG-20031110/#table111 ."
- % (self.bitdepth, self.color_type))
- if self.compression != 0:
- raise Error("unknown compression method %d" % self.compression)
- if self.filter != 0:
- raise FormatError("Unknown filter method %d,"
- " see http://www.w3.org/TR/2003/REC-PNG-20031110/#9Filters ."
- % self.filter)
- if self.interlace not in (0,1):
- raise FormatError("Unknown interlace method %d,"
- " see http://www.w3.org/TR/2003/REC-PNG-20031110/#8InterlaceMethods ."
- % self.interlace)
-
- # Derived values
- # http://www.w3.org/TR/PNG/#6Colour-values
- colormap = bool(self.color_type & 1)
- greyscale = not (self.color_type & 2)
- alpha = bool(self.color_type & 4)
- color_planes = (3,1)[greyscale or colormap]
- planes = color_planes + alpha
-
- self.colormap = colormap
- self.greyscale = greyscale
- self.alpha = alpha
- self.color_planes = color_planes
- self.planes = planes
- self.psize = float(self.bitdepth)/float(8) * planes
- if int(self.psize) == self.psize:
- self.psize = int(self.psize)
- self.row_bytes = int(math.ceil(self.width * self.psize))
- # Stores PLTE chunk if present, and is used to check
- # chunk ordering constraints.
- self.plte = None
- # Stores tRNS chunk if present, and is used to check chunk
- # ordering constraints.
- self.trns = None
- # Stores sbit chunk if present.
- self.sbit = None
- elif type == 'PLTE':
- # http://www.w3.org/TR/PNG/#11PLTE
- if self.plte:
- warnings.warn("Multiple PLTE chunks present.")
- self.plte = data
- if len(data) % 3 != 0:
- raise FormatError(
- "PLTE chunk's length should be a multiple of 3.")
- if len(data) > (2**self.bitdepth)*3:
- raise FormatError("PLTE chunk is too long.")
- if len(data) == 0:
- raise FormatError("Empty PLTE is not allowed.")
- elif type == 'bKGD':
- try:
- if self.colormap:
- if not self.plte:
- warnings.warn(
- "PLTE chunk is required before bKGD chunk.")
- self.background = struct.unpack('B', data)
- else:
- self.background = struct.unpack("!%dH" % self.color_planes,
- data)
- except struct.error:
- raise FormatError("bKGD chunk has incorrect length.")
- elif type == 'tRNS':
- # http://www.w3.org/TR/PNG/#11tRNS
- self.trns = data
- if self.colormap:
- if not self.plte:
- warnings.warn("PLTE chunk is required before tRNS chunk.")
- else:
- if len(data) > len(self.plte)/3:
- # Was warning, but promoted to Error as it
- # would otherwise cause pain later on.
- raise FormatError("tRNS chunk is too long.")
- else:
- if self.alpha:
- raise FormatError(
- "tRNS chunk is not valid with colour type %d." %
- self.color_type)
- try:
- self.transparent = \
- struct.unpack("!%dH" % self.color_planes, data)
- except struct.error:
- raise FormatError("tRNS chunk has incorrect length.")
- elif type == 'gAMA':
- try:
- self.gamma = struct.unpack("!L", data)[0] / 100000.0
- except struct.error:
- raise FormatError("gAMA chunk has incorrect length.")
- elif type == 'sBIT':
- self.sbit = data
- if (self.colormap and len(data) != 3 or
- not self.colormap and len(data) != self.planes):
- raise FormatError("sBIT chunk has incorrect length.")
-
- def read(self):
- """
- Read the PNG file and decode it. Returns (`width`, `height`,
- `pixels`, `metadata`).
-
- May use excessive memory.
-
- `pixels` are returned in boxed row flat pixel format.
- """
-
- def iteridat():
- """Iterator that yields all the ``IDAT`` chunks as strings."""
- while True:
- try:
- type, data = self.chunk()
- except ValueError, e:
- raise ChunkError(e.args[0])
- if type == 'IEND':
- # http://www.w3.org/TR/PNG/#11IEND
- break
- if type != 'IDAT':
- continue
- # type == 'IDAT'
- # http://www.w3.org/TR/PNG/#11IDAT
- if self.colormap and not self.plte:
- warnings.warn("PLTE chunk is required before IDAT chunk")
- yield data
-
- def iterdecomp(idat):
- """Iterator that yields decompressed strings. `idat` should
- be an iterator that yields the ``IDAT`` chunk data.
- """
-
- # Currently, with no max_length paramter to decompress, this
- # routine will do one yield per IDAT chunk. So not very
- # incremental.
- d = zlib.decompressobj()
- # Each IDAT chunk is passed to the decompressor, then any
- # remaining state is decompressed out.
- for data in idat:
- # :todo: add a max_length argument here to limit output
- # size.
- yield array('B', d.decompress(data))
- yield array('B', d.flush())
-
- self.preamble()
- raw = iterdecomp(iteridat())
-
- if self.interlace:
- raw = array('B', itertools.chain(*raw))
- arraycode = 'BH'[self.bitdepth>8]
- # Like :meth:`group` but producing an array.array object for
- # each row.
- pixels = itertools.imap(lambda *row: array(arraycode, row),
- *[iter(self.deinterlace(raw))]*self.width*self.planes)
- else:
- pixels = self.iterboxed(self.iterstraight(raw))
- meta = dict()
- for attr in 'greyscale alpha planes bitdepth interlace'.split():
- meta[attr] = getattr(self, attr)
- meta['size'] = (self.width, self.height)
- for attr in 'gamma transparent background'.split():
- a = getattr(self, attr, None)
- if a is not None:
- meta[attr] = a
- return self.width, self.height, pixels, meta
-
-
- def read_flat(self):
- """
- Read a PNG file and decode it into flat row flat pixel format.
- Returns (*width*, *height*, *pixels*, *metadata*).
-
- May use excessive memory.
-
- `pixels` are returned in flat row flat pixel format.
-
- See also the :meth:`read` method which returns pixels in the
- more stream-friendly boxed row flat pixel format.
- """
-
- x, y, pixel, meta = self.read()
- arraycode = 'BH'[meta['bitdepth']>8]
- pixel = array(arraycode, itertools.chain(*pixel))
- return x, y, pixel, meta
-
- def palette(self, alpha='natural'):
- """Returns a palette that is a sequence of 3-tuples or 4-tuples,
- synthesizing it from the ``PLTE`` and ``tRNS`` chunks. These
- chunks should have already been processed (for example, by
- calling the :meth:`preamble` method). All the tuples are the
- same size: 3-tuples if there is no ``tRNS`` chunk, 4-tuples when
- there is a ``tRNS`` chunk. Assumes that the image is colour type
- 3 and therefore a ``PLTE`` chunk is required.
-
- If the `alpha` argument is ``'force'`` then an alpha channel is
- always added, forcing the result to be a sequence of 4-tuples.
- """
-
- if not self.plte:
- raise FormatError(
- "Required PLTE chunk is missing in colour type 3 image.")
- plte = group(array('B', self.plte), 3)
- if self.trns or alpha == 'force':
- trns = array('B', self.trns or '')
- trns.extend([255]*(len(plte)-len(trns)))
- plte = map(operator.add, plte, group(trns, 1))
- return plte
-
- def asDirect(self):
- """Returns the image data as a direct representation of an
- ``x * y * planes`` array. This method is intended to remove the
- need for callers to deal with palettes and transparency
- themselves. Images with a palette (colour type 3)
- are converted to RGB or RGBA; images with transparency (a
- ``tRNS`` chunk) are converted to LA or RGBA as appropriate.
- When returned in this format the pixel values represent the
- colour value directly without needing to refer to palettes or
- transparency information.
-
- Like the :meth:`read` method this method returns a 4-tuple:
-
- (*width*, *height*, *pixels*, *meta*)
-
- This method normally returns pixel values with the bit depth
- they have in the source image, but when the source PNG has an
- ``sBIT`` chunk it is inspected and can reduce the bit depth of
- the result pixels; pixel values will be reduced according to
- the bit depth specified in the ``sBIT`` chunk (PNG nerds should
- note a single result bit depth is used for all channels; the
- maximum of the ones specified in the ``sBIT`` chunk. An RGB565
- image will be rescaled to 6-bit RGB666).
-
- The *meta* dictionary that is returned reflects the `direct`
- format and not the original source image. For example, an RGB
- source image with a ``tRNS`` chunk to represent a transparent
- colour, will have ``planes=3`` and ``alpha=False`` for the
- source image, but the *meta* dictionary returned by this method
- will have ``planes=4`` and ``alpha=True`` because an alpha
- channel is synthesized and added.
-
- *pixels* is the pixel data in boxed row flat pixel format (just
- like the :meth:`read` method).
-
- All the other aspects of the image data are not changed.
- """
-
- self.preamble()
-
- # Simple case, no conversion necessary.
- if not self.colormap and not self.trns and not self.sbit:
- return self.read()
-
- x,y,pixels,meta = self.read()
-
- if self.colormap:
- meta['colormap'] = False
- meta['alpha'] = bool(self.trns)
- meta['bitdepth'] = 8
- meta['planes'] = 3 + bool(self.trns)
- plte = self.palette()
- def iterpal(pixels):
- for row in pixels:
- row = map(plte.__getitem__, row)
- yield array('B', itertools.chain(*row))
- pixels = iterpal(pixels)
- elif self.trns:
- # It would be nice if there was some reasonable way of doing
- # this without generating a whole load of intermediate tuples.
- # But tuples does seem like the easiest way, with no other way
- # clearly much simpler or much faster. (Actually, the L to LA
- # conversion could perhaps go faster (all those 1-tuples!), but
- # I still wonder whether the code proliferation is worth it)
- it = self.transparent
- maxval = 2**meta['bitdepth']-1
- planes = meta['planes']
- meta['alpha'] = True
- meta['planes'] += 1
- typecode = 'BH'[meta['bitdepth']>8]
- def itertrns(pixels):
- for row in pixels:
- # For each row we group it into pixels, then form a
- # characterisation vector that says whether each pixel
- # is opaque or not. Then we convert True/False to
- # 0/maxval (by multiplication), and add it as the extra
- # channel.
- row = group(row, planes)
- opa = map(it.__ne__, row)
- opa = map(maxval.__mul__, opa)
- opa = zip(opa) # convert to 1-tuples
- yield array(typecode,
- itertools.chain(*map(operator.add, row, opa)))
- pixels = itertrns(pixels)
- targetbitdepth = None
- if self.sbit:
- sbit = struct.unpack('%dB' % len(self.sbit), self.sbit)
- targetbitdepth = max(sbit)
- if targetbitdepth > meta['bitdepth']:
- raise Error('sBIT chunk %r exceeds bitdepth %d' %
- (sbit,self.bitdepth))
- if min(sbit) <= 0:
- raise Error('sBIT chunk %r has a 0-entry' % sbit)
- if targetbitdepth == meta['bitdepth']:
- targetbitdepth = None
- if targetbitdepth:
- shift = meta['bitdepth'] - targetbitdepth
- meta['bitdepth'] = targetbitdepth
- def itershift(pixels):
- for row in pixels:
- yield map(shift.__rrshift__, row)
- pixels = itershift(pixels)
- return x,y,pixels,meta
-
- def asFloat(self, maxval=1.0):
- """Return image pixels as per :meth:`asDirect` method, but scale
- all pixel values to be floating point values between 0.0 and
- *maxval*.
- """
-
- x,y,pixels,info = self.asDirect()
- sourcemaxval = 2**info['bitdepth']-1
- del info['bitdepth']
- info['maxval'] = float(maxval)
- factor = float(maxval)/float(sourcemaxval)
- def iterfloat():
- for row in pixels:
- yield map(factor.__mul__, row)
- return x,y,iterfloat(),info
-
- def _as_rescale(self, get, targetbitdepth):
- """Helper used by :meth:`asRGB8` and :meth:`asRGBA8`."""
-
- width,height,pixels,meta = get()
- maxval = 2**meta['bitdepth'] - 1
- targetmaxval = 2**targetbitdepth - 1
- factor = float(targetmaxval) / float(maxval)
- meta['bitdepth'] = targetbitdepth
- def iterscale():
- for row in pixels:
- yield map(lambda x: int(round(x*factor)), row)
- return width, height, iterscale(), meta
-
- def asRGB8(self):
- """Return the image data as an RGB pixels with 8-bits per
- sample. This is like the :meth:`asRGB` method except that
- this method additionally rescales the values so that they
- are all between 0 and 255 (8-bit). In the case where the
- source image has a bit depth < 8 the transformation preserves
- all the information; where the source image has bit depth
- > 8, then rescaling to 8-bit values loses precision. No
- dithering is performed. Like :meth:`asRGB`, an alpha channel
- in the source image will raise an exception.
-
- This function returns a 4-tuple:
- (*width*, *height*, *pixels*, *metadata*).
- *width*, *height*, *metadata* are as per the :meth:`read` method.
-
- *pixels* is the pixel data in boxed row flat pixel format.
- """
-
- return self._as_rescale(self.asRGB, 8)
-
- def asRGBA8(self):
- """Return the image data as RGBA pixels with 8-bits per
- sample. This method is similar to :meth:`asRGB8` and
- :meth:`asRGBA`: The result pixels have an alpha channel, *and*
- values are rescaled to the range 0 to 255. The alpha channel is
- synthesized if necessary (with a small speed penalty).
- """
-
- return self._as_rescale(self.asRGBA, 8)
-
- def asRGB(self):
- """Return image as RGB pixels. RGB colour images are passed
- through unchanged; greyscales are expanded into RGB
- triplets (there is a small speed overhead for doing this).
-
- An alpha channel in the source image will raise an
- exception.
-
- The return values are as for the :meth:`read` method
- except that the *metadata* reflect the returned pixels, not the
- source image. In particular, for this method
- ``metadata['greyscale']`` will be ``False``.
- """
-
- width,height,pixels,meta = self.asDirect()
- if meta['alpha']:
- raise Error("will not convert image with alpha channel to RGB")
- if not meta['greyscale']:
- return width,height,pixels,meta
- meta['greyscale'] = False
- typecode = 'BH'[meta['bitdepth'] > 8]
- def iterrgb():
- for row in pixels:
- a = array(typecode, [0]) * 3 * width
- for i in range(3):
- a[i::3] = row
- yield a
- return width,height,iterrgb(),meta
-
- def asRGBA(self):
- """Return image as RGBA pixels. Greyscales are expanded into
- RGB triplets; an alpha channel is synthesized if necessary.
- The return values are as for the :meth:`read` method
- except that the *metadata* reflect the returned pixels, not the
- source image. In particular, for this method
- ``metadata['greyscale']`` will be ``False``, and
- ``metadata['alpha']`` will be ``True``.
- """
-
- width,height,pixels,meta = self.asDirect()
- if meta['alpha'] and not meta['greyscale']:
- return width,height,pixels,meta
- typecode = 'BH'[meta['bitdepth'] > 8]
- maxval = 2**meta['bitdepth'] - 1
- def newarray():
- return array(typecode, [0]) * 4 * width
- if meta['alpha'] and meta['greyscale']:
- # LA to RGBA
- def convert():
- for row in pixels:
- # Create a fresh target row, then copy L channel
- # into first three target channels, and A channel
- # into fourth channel.
- a = newarray()
- for i in range(3):
- a[i::4] = row[0::2]
- a[3::4] = row[1::2]
- yield a
- elif meta['greyscale']:
- # L to RGBA
- def convert():
- for row in pixels:
- a = newarray()
- for i in range(3):
- a[i::4] = row
- a[3::4] = array(typecode, [maxval]) * width
- yield a
- else:
- assert not meta['alpha'] and not meta['greyscale']
- # RGB to RGBA
- def convert():
- for row in pixels:
- a = newarray()
- for i in range(3):
- a[i::4] = row[i::3]
- a[3::4] = array(typecode, [maxval]) * width
- yield a
- meta['alpha'] = True
- meta['greyscale'] = False
- return width,height,convert(),meta
-
-
-# === Legacy Version Support ===
-
-# :pyver:old: PyPNG works on Python versions 2.3 and 2.2, but not
-# without some awkward problems. Really PyPNG works on Python 2.4 (and
-# above); it works on Pythons 2.3 and 2.2 by virtue of fixing up
-# problems here. It's a bit ugly (which is why it's hidden down here).
-#
-# Generally the strategy is one of pretending that we're running on
-# Python 2.4 (or above), and patching up the library support on earlier
-# versions so that it looks enough like Python 2.4. When it comes to
-# Python 2.2 there is one thing we cannot patch: extended slices
-# http://www.python.org/doc/2.3/whatsnew/section-slices.html.
-# Instead we simply declare that features that are implemented using
-# extended slices will not work on Python 2.2.
-#
-# In order to work on Python 2.3 we fix up a recurring annoyance involving
-# the array type. In Python 2.3 an array cannot be initialised with an
-# array, and it cannot be extended with a list (or other sequence).
-# Both of those are repeated issues in the code. Whilst I would not
-# normally tolerate this sort of behaviour, here we "shim" a replacement
-# for array into place (and hope no-ones notices). You never read this.
-#
-# In an amusing case of warty hacks on top of warty hacks... the array
-# shimming we try and do only works on Python 2.3 and above (you can't
-# subclass array.array in Python 2.2). So to get it working on Python
-# 2.2 we go for something much simpler and (probably) way slower.
-try:
- array('B').extend([])
- array('B', array('B'))
-except:
- # Expect to get here on Python 2.3
- try:
- class _array_shim(array):
- true_array = array
- def __new__(cls, typecode, init=None):
- super_new = super(_array_shim, cls).__new__
- it = super_new(cls, typecode)
- if init is None:
- return it
- it.extend(init)
- return it
- def extend(self, extension):
- super_extend = super(_array_shim, self).extend
- if isinstance(extension, self.true_array):
- return super_extend(extension)
- if not isinstance(extension, (list, str)):
- # Convert to list. Allows iterators to work.
- extension = list(extension)
- return super_extend(self.true_array(self.typecode, extension))
- array = _array_shim
- except:
- # Expect to get here on Python 2.2
- def array(typecode, init=()):
- if type(init) == str:
- return map(ord, init)
- return list(init)
-
-# Further hacks to get it limping along on Python 2.2
-try:
- enumerate
-except:
- def enumerate(seq):
- i=0
- for x in seq:
- yield i,x
- i += 1
-
-try:
- reversed
-except:
- def reversed(l):
- l = list(l)
- l.reverse()
- for x in l:
- yield x
-
-try:
- itertools
-except:
- class _dummy_itertools:
- pass
- itertools = _dummy_itertools()
- def _itertools_imap(f, seq):
- for x in seq:
- yield f(x)
- itertools.imap = _itertools_imap
- def _itertools_chain(*iterables):
- for it in iterables:
- for element in it:
- yield element
- itertools.chain = _itertools_chain
-
-
-
-# === Internal Test Support ===
-
-# This section comprises the tests that are internally validated (as
-# opposed to tests which produce output files that are externally
-# validated). Primarily they are unittests.
-
-# Note that it is difficult to internally validate the results of
-# writing a PNG file. The only thing we can do is read it back in
-# again, which merely checks consistency, not that the PNG file we
-# produce is valid.
-
-# Run the tests from the command line:
-# python -c 'import png;png.test()'
-
-# (For an in-memory binary file IO object) We use BytesIO where
-# available, otherwise we use StringIO, but name it BytesIO.
-try:
- from io import BytesIO
-except:
- from StringIO import StringIO as BytesIO
-import tempfile
-# http://www.python.org/doc/2.4.4/lib/module-unittest.html
-import unittest
-
-
-def test():
- unittest.main(__name__)
-
-def topngbytes(name, rows, x, y, **k):
- """Convenience function for creating a PNG file "in memory" as a
- string. Creates a :class:`Writer` instance using the keyword arguments,
- then passes `rows` to its :meth:`Writer.write` method. The resulting
- PNG file is returned as a string. `name` is used to identify the file for
- debugging.
- """
-
- import os
-
- print name
- f = BytesIO()
- w = Writer(x, y, **k)
- w.write(f, rows)
- if os.environ.get('PYPNG_TEST_TMP'):
- w = open(name, 'wb')
- w.write(f.getvalue())
- w.close()
- return f.getvalue()
-
-def testWithIO(inp, out, f):
- """Calls the function `f` with ``sys.stdin`` changed to `inp`
- and ``sys.stdout`` changed to `out`. They are restored when `f`
- returns. This function returns whatever `f` returns.
- """
-
- import os
-
- try:
- oldin,sys.stdin = sys.stdin,inp
- oldout,sys.stdout = sys.stdout,out
- x = f()
- finally:
- sys.stdin = oldin
- sys.stdout = oldout
- if os.environ.get('PYPNG_TEST_TMP') and hasattr(out,'getvalue'):
- name = mycallersname()
- if name:
- w = open(name+'.png', 'wb')
- w.write(out.getvalue())
- w.close()
- return x
-
-def mycallersname():
- """Returns the name of the caller of the caller of this function
- (hence the name of the caller of the function in which
- "mycallersname()" textually appears). Returns None if this cannot
- be determined."""
-
- # http://docs.python.org/library/inspect.html#the-interpreter-stack
- import inspect
-
- frame = inspect.currentframe()
- if not frame:
- return None
- frame_,filename_,lineno_,funname,linelist_,listi_ = (
- inspect.getouterframes(frame)[2])
- return funname
-
-def seqtobytes(s):
- """Convert a sequence of integers to a *bytes* instance. Good for
- plastering over Python 2 / Python 3 cracks.
- """
-
- return strtobytes(''.join(chr(x) for x in s))
-
-class Test(unittest.TestCase):
- # This member is used by the superclass. If we don't define a new
- # class here then when we use self.assertRaises() and the PyPNG code
- # raises an assertion then we get no proper traceback. I can't work
- # out why, but defining a new class here means we get a proper
- # traceback.
- class failureException(Exception):
- pass
-
- def helperLN(self, n):
- mask = (1 << n) - 1
- # Use small chunk_limit so that multiple chunk writing is
- # tested. Making it a test for Issue 20.
- w = Writer(15, 17, greyscale=True, bitdepth=n, chunk_limit=99)
- f = BytesIO()
- w.write_array(f, array('B', map(mask.__and__, range(1, 256))))
- r = Reader(bytes=f.getvalue())
- x,y,pixels,meta = r.read()
- self.assertEqual(x, 15)
- self.assertEqual(y, 17)
- self.assertEqual(list(itertools.chain(*pixels)),
- map(mask.__and__, range(1,256)))
- def testL8(self):
- return self.helperLN(8)
- def testL4(self):
- return self.helperLN(4)
- def testL2(self):
- "Also tests asRGB8."
- w = Writer(1, 4, greyscale=True, bitdepth=2)
- f = BytesIO()
- w.write_array(f, array('B', range(4)))
- r = Reader(bytes=f.getvalue())
- x,y,pixels,meta = r.asRGB8()
- self.assertEqual(x, 1)
- self.assertEqual(y, 4)
- for i,row in enumerate(pixels):
- self.assertEqual(len(row), 3)
- self.assertEqual(list(row), [0x55*i]*3)
- def testP2(self):
- "2-bit palette."
- a = (255,255,255)
- b = (200,120,120)
- c = (50,99,50)
- w = Writer(1, 4, bitdepth=2, palette=[a,b,c])
- f = BytesIO()
- w.write_array(f, array('B', (0,1,1,2)))
- r = Reader(bytes=f.getvalue())
- x,y,pixels,meta = r.asRGB8()
- self.assertEqual(x, 1)
- self.assertEqual(y, 4)
- self.assertEqual(list(pixels), map(list, [a, b, b, c]))
- def testPtrns(self):
- "Test colour type 3 and tRNS chunk (and 4-bit palette)."
- a = (50,99,50,50)
- b = (200,120,120,80)
- c = (255,255,255)
- d = (200,120,120)
- e = (50,99,50)
- w = Writer(3, 3, bitdepth=4, palette=[a,b,c,d,e])
- f = BytesIO()
- w.write_array(f, array('B', (4, 3, 2, 3, 2, 0, 2, 0, 1)))
- r = Reader(bytes=f.getvalue())
- x,y,pixels,meta = r.asRGBA8()
- self.assertEqual(x, 3)
- self.assertEqual(y, 3)
- c = c+(255,)
- d = d+(255,)
- e = e+(255,)
- boxed = [(e,d,c),(d,c,a),(c,a,b)]
- flat = map(lambda row: itertools.chain(*row), boxed)
- self.assertEqual(map(list, pixels), map(list, flat))
- def testRGBtoRGBA(self):
- "asRGBA8() on colour type 2 source."""
- # Test for Issue 26
- r = Reader(bytes=_pngsuite['basn2c08'])
- x,y,pixels,meta = r.asRGBA8()
- # Test the pixels at row 9 columns 0 and 1.
- row9 = list(pixels)[9]
- self.assertEqual(row9[0:8],
- [0xff, 0xdf, 0xff, 0xff, 0xff, 0xde, 0xff, 0xff])
- def testLtoRGBA(self):
- "asRGBA() on grey source."""
- # Test for Issue 60
- r = Reader(bytes=_pngsuite['basi0g08'])
- x,y,pixels,meta = r.asRGBA()
- row9 = list(list(pixels)[9])
- self.assertEqual(row9[0:8],
- [222, 222, 222, 255, 221, 221, 221, 255])
- def testCtrns(self):
- "Test colour type 2 and tRNS chunk."
- # Test for Issue 25
- r = Reader(bytes=_pngsuite['tbrn2c08'])
- x,y,pixels,meta = r.asRGBA8()
- # I just happen to know that the first pixel is transparent.
- # In particular it should be #7f7f7f00
- row0 = list(pixels)[0]
- self.assertEqual(tuple(row0[0:4]), (0x7f, 0x7f, 0x7f, 0x00))
- def testAdam7read(self):
- """Adam7 interlace reading.
- Specifically, test that for images in the PngSuite that
- have both an interlaced and straightlaced pair that both
- images from the pair produce the same array of pixels."""
- for candidate in _pngsuite:
- if not candidate.startswith('basn'):
- continue
- candi = candidate.replace('n', 'i')
- if candi not in _pngsuite:
- continue
- print 'adam7 read', candidate
- straight = Reader(bytes=_pngsuite[candidate])
- adam7 = Reader(bytes=_pngsuite[candi])
- # Just compare the pixels. Ignore x,y (because they're
- # likely to be correct?); metadata is ignored because the
- # "interlace" member differs. Lame.
- straight = straight.read()[2]
- adam7 = adam7.read()[2]
- self.assertEqual(map(list, straight), map(list, adam7))
- def testAdam7write(self):
- """Adam7 interlace writing.
- For each test image in the PngSuite, write an interlaced
- and a straightlaced version. Decode both, and compare results.
- """
- # Not such a great test, because the only way we can check what
- # we have written is to read it back again.
-
- for name,bytes in _pngsuite.items():
- # Only certain colour types supported for this test.
- if name[3:5] not in ['n0', 'n2', 'n4', 'n6']:
- continue
- it = Reader(bytes=bytes)
- x,y,pixels,meta = it.read()
- pngi = topngbytes('adam7wn'+name+'.png', pixels,
- x=x, y=y, bitdepth=it.bitdepth,
- greyscale=it.greyscale, alpha=it.alpha,
- transparent=it.transparent,
- interlace=False)
- x,y,ps,meta = Reader(bytes=pngi).read()
- it = Reader(bytes=bytes)
- x,y,pixels,meta = it.read()
- pngs = topngbytes('adam7wi'+name+'.png', pixels,
- x=x, y=y, bitdepth=it.bitdepth,
- greyscale=it.greyscale, alpha=it.alpha,
- transparent=it.transparent,
- interlace=True)
- x,y,pi,meta = Reader(bytes=pngs).read()
- self.assertEqual(map(list, ps), map(list, pi))
- def testPGMin(self):
- """Test that the command line tool can read PGM files."""
- def do():
- return _main(['testPGMin'])
- s = BytesIO()
- s.write(strtobytes('P5 2 2 3\n'))
- s.write(strtobytes('\x00\x01\x02\x03'))
- s.flush()
- s.seek(0)
- o = BytesIO()
- testWithIO(s, o, do)
- r = Reader(bytes=o.getvalue())
- x,y,pixels,meta = r.read()
- self.assertTrue(r.greyscale)
- self.assertEqual(r.bitdepth, 2)
- def testPAMin(self):
- """Test that the command line tool can read PAM file."""
- def do():
- return _main(['testPAMin'])
- s = BytesIO()
- s.write(strtobytes('P7\nWIDTH 3\nHEIGHT 1\nDEPTH 4\nMAXVAL 255\n'
- 'TUPLTYPE RGB_ALPHA\nENDHDR\n'))
- # The pixels in flat row flat pixel format
- flat = [255,0,0,255, 0,255,0,120, 0,0,255,30]
- asbytes = seqtobytes(flat)
- s.write(asbytes)
- s.flush()
- s.seek(0)
- o = BytesIO()
- testWithIO(s, o, do)
- r = Reader(bytes=o.getvalue())
- x,y,pixels,meta = r.read()
- self.assertTrue(r.alpha)
- self.assertTrue(not r.greyscale)
- self.assertEqual(list(itertools.chain(*pixels)), flat)
- def testLA4(self):
- """Create an LA image with bitdepth 4."""
- bytes = topngbytes('la4.png', [[5, 12]], 1, 1,
- greyscale=True, alpha=True, bitdepth=4)
- sbit = Reader(bytes=bytes).chunk('sBIT')[1]
- self.assertEqual(sbit, strtobytes('\x04\x04'))
- def testPNMsbit(self):
- """Test that PNM files can generates sBIT chunk."""
- def do():
- return _main(['testPNMsbit'])
- s = BytesIO()
- s.write(strtobytes('P6 8 1 1\n'))
- for pixel in range(8):
- s.write(struct.pack('<I', (0x4081*pixel)&0x10101)[:3])
- s.flush()
- s.seek(0)
- o = BytesIO()
- testWithIO(s, o, do)
- r = Reader(bytes=o.getvalue())
- sbit = r.chunk('sBIT')[1]
- self.assertEqual(sbit, strtobytes('\x01\x01\x01'))
- def testLtrns0(self):
- """Create greyscale image with tRNS chunk."""
- return self.helperLtrns(0)
- def testLtrns1(self):
- """Using 1-tuple for transparent arg."""
- return self.helperLtrns((0,))
- def helperLtrns(self, transparent):
- """Helper used by :meth:`testLtrns*`."""
- pixels = zip([0x00, 0x38, 0x4c, 0x54, 0x5c, 0x40, 0x38, 0x00])
- o = BytesIO()
- w = Writer(8, 8, greyscale=True, bitdepth=1, transparent=transparent)
- w.write_packed(o, pixels)
- r = Reader(bytes=o.getvalue())
- x,y,pixels,meta = r.asDirect()
- self.assertTrue(meta['alpha'])
- self.assertTrue(meta['greyscale'])
- self.assertEqual(meta['bitdepth'], 1)
- def testWinfo(self):
- """Test the dictionary returned by a `read` method can be used
- as args for :meth:`Writer`.
- """
- r = Reader(bytes=_pngsuite['basn2c16'])
- info = r.read()[3]
- w = Writer(**info)
- def testPackedIter(self):
- """Test iterator for row when using write_packed.
-
- Indicative for Issue 47.
- """
- w = Writer(16, 2, greyscale=True, alpha=False, bitdepth=1)
- o = BytesIO()
- w.write_packed(o, [itertools.chain([0x0a], [0xaa]),
- itertools.chain([0x0f], [0xff])])
- r = Reader(bytes=o.getvalue())
- x,y,pixels,info = r.asDirect()
- pixels = list(pixels)
- self.assertEqual(len(pixels), 2)
- self.assertEqual(len(pixels[0]), 16)
- def testInterlacedArray(self):
- """Test that reading an interlaced PNG yields each row as an
- array."""
- r = Reader(bytes=_pngsuite['basi0g08'])
- list(r.read()[2])[0].tostring
- def testTrnsArray(self):
- """Test that reading a type 2 PNG with tRNS chunk yields each
- row as an array (using asDirect)."""
- r = Reader(bytes=_pngsuite['tbrn2c08'])
- list(r.asDirect()[2])[0].tostring
-
- # Invalid file format tests. These construct various badly
- # formatted PNG files, then feed them into a Reader. When
- # everything is working properly, we should get FormatError
- # exceptions raised.
- def testEmpty(self):
- """Test empty file."""
-
- r = Reader(bytes='')
- self.assertRaises(FormatError, r.asDirect)
- def testSigOnly(self):
- """Test file containing just signature bytes."""
-
- r = Reader(bytes=_signature)
- self.assertRaises(FormatError, r.asDirect)
- def testExtraPixels(self):
- """Test file that contains too many pixels."""
-
- def eachchunk(chunk):
- if chunk[0] != 'IDAT':
- return chunk
- data = zlib.decompress(chunk[1])
- data += strtobytes('\x00garbage')
- data = zlib.compress(data)
- chunk = (chunk[0], data)
- return chunk
- self.assertRaises(FormatError, self.helperFormat, eachchunk)
- def testNotEnoughPixels(self):
- def eachchunk(chunk):
- if chunk[0] != 'IDAT':
- return chunk
- # Remove last byte.
- data = zlib.decompress(chunk[1])
- data = data[:-1]
- data = zlib.compress(data)
- return (chunk[0], data)
- self.assertRaises(FormatError, self.helperFormat, eachchunk)
- def helperFormat(self, f):
- r = Reader(bytes=_pngsuite['basn0g01'])
- o = BytesIO()
- def newchunks():
- for chunk in r.chunks():
- yield f(chunk)
- write_chunks(o, newchunks())
- r = Reader(bytes=o.getvalue())
- return list(r.asDirect()[2])
- def testBadFilter(self):
- def eachchunk(chunk):
- if chunk[0] != 'IDAT':
- return chunk
- data = zlib.decompress(chunk[1])
- # Corrupt the first filter byte
- data = strtobytes('\x99') + data[1:]
- data = zlib.compress(data)
- return (chunk[0], data)
- self.assertRaises(FormatError, self.helperFormat, eachchunk)
- def testFlat(self):
- """Test read_flat."""
- import hashlib
-
- r = Reader(bytes=_pngsuite['basn0g02'])
- x,y,pixel,meta = r.read_flat()
- d = hashlib.md5(seqtobytes(pixel)).digest()
- self.assertEqual(_enhex(d), '255cd971ab8cd9e7275ff906e5041aa0')
- def testfromarray(self):
- img = from_array([[0, 0x33, 0x66], [0xff, 0xcc, 0x99]], 'L')
- img.save('testfromarray.png')
- def testfromarrayL16(self):
- img = from_array(group(range(2**16), 256), 'L;16')
- img.save('testL16.png')
- def testfromarrayRGB(self):
- img = from_array([[0,0,0, 0,0,1, 0,1,0, 0,1,1],
- [1,0,0, 1,0,1, 1,1,0, 1,1,1]], 'RGB;1')
- o = BytesIO()
- img.save(o)
- def testfromarrayIter(self):
- import itertools
-
- i = itertools.islice(itertools.count(10), 20)
- i = itertools.imap(lambda x: [x, x, x], i)
- img = from_array(i, 'RGB;5', dict(height=20))
- f = open('testiter.png', 'wb')
- img.save(f)
- f.close()
-
- # numpy dependent tests. These are skipped (with a message to
- # sys.stderr) if numpy cannot be imported.
- def testNumpyuint16(self):
- """numpy uint16."""
-
- try:
- import numpy
- except ImportError:
- print >>sys.stderr, "skipping numpy test"
- return
-
- rows = [map(numpy.uint16, range(0,0x10000,0x5555))]
- b = topngbytes('numpyuint16.png', rows, 4, 1,
- greyscale=True, alpha=False, bitdepth=16)
- def testNumpyuint8(self):
- """numpy uint8."""
-
- try:
- import numpy
- except ImportError:
- print >>sys.stderr, "skipping numpy test"
- return
-
- rows = [map(numpy.uint8, range(0,0x100,0x55))]
- b = topngbytes('numpyuint8.png', rows, 4, 1,
- greyscale=True, alpha=False, bitdepth=8)
- def testNumpybool(self):
- """numpy bool."""
-
- try:
- import numpy
- except ImportError:
- print >>sys.stderr, "skipping numpy test"
- return
-
- rows = [map(numpy.bool, [0,1])]
- b = topngbytes('numpybool.png', rows, 2, 1,
- greyscale=True, alpha=False, bitdepth=1)
- def testNumpyarray(self):
- """numpy array."""
- try:
- import numpy
- except ImportError:
- print >>sys.stderr, "skipping numpy test"
- return
-
- pixels = numpy.array([[0,0x5555],[0x5555,0xaaaa]], numpy.uint16)
- img = from_array(pixels, 'L')
- img.save('testnumpyL16.png')
-
-# === Command Line Support ===
-
-def _dehex(s):
- """Liberally convert from hex string to binary string."""
- import re
- import binascii
-
- # Remove all non-hexadecimal digits
- s = re.sub(r'[^a-fA-F\d]', '', s)
- # binscii.unhexlify works in Python 2 and Python 3 (unlike
- # thing.decode('hex')).
- return binascii.unhexlify(strtobytes(s))
-def _enhex(s):
- """Convert from binary string (bytes) to hex string (str)."""
-
- import binascii
-
- return bytestostr(binascii.hexlify(s))
-
-# Copies of PngSuite test files taken
-# from http://www.schaik.com/pngsuite/pngsuite_bas_png.html
-# on 2009-02-19 by drj and converted to hex.
-# Some of these are not actually in PngSuite (but maybe they should
-# be?), they use the same naming scheme, but start with a capital
-# letter.
-_pngsuite = {
- 'basi0g01': _dehex("""
-89504e470d0a1a0a0000000d49484452000000200000002001000000012c0677
-cf0000000467414d41000186a031e8965f0000009049444154789c2d8d310ec2
-300c45dfc682c415187a00a42e197ab81e83b127e00c5639001363a580d8582c
-65c910357c4b78b0bfbfdf4f70168c19e7acb970a3f2d1ded9695ce5bf5963df
-d92aaf4c9fd927ea449e6487df5b9c36e799b91bdf082b4d4bd4014fe4014b01
-ab7a17aee694d28d328a2d63837a70451e1648702d9a9ff4a11d2f7a51aa21e5
-a18c7ffd0094e3511d661822f20000000049454e44ae426082
-"""),
- 'basi0g02': _dehex("""
-89504e470d0a1a0a0000000d49484452000000200000002002000000016ba60d
-1f0000000467414d41000186a031e8965f0000005149444154789c635062e860
-00e17286bb609c93c370ec189494960631366e4467b3ae675dcf10f521ea0303
-90c1ca006444e11643482064114a4852c710baea3f18c31918020c30410403a6
-0ac1a09239009c52804d85b6d97d0000000049454e44ae426082
-"""),
- 'basi0g04': _dehex("""
-89504e470d0a1a0a0000000d4948445200000020000000200400000001e4e6f8
-bf0000000467414d41000186a031e8965f000000ae49444154789c658e5111c2
-301044171c141c141c041c843a287510ea20d441c041c141c141c04191102454
-03994998cecd7edcecedbb9bdbc3b2c2b6457545fbc4bac1be437347f7c66a77
-3c23d60db15e88f5c5627338a5416c2e691a9b475a89cd27eda12895ae8dfdab
-43d61e590764f5c83a226b40d669bec307f93247701687723abf31ff83a2284b
-a5b4ae6b63ac6520ad730ca4ed7b06d20e030369bd6720ed383290360406d24e
-13811f2781eba9d34d07160000000049454e44ae426082
-"""),
- 'basi0g08': _dehex("""
-89504e470d0a1a0a0000000d4948445200000020000000200800000001211615
-be0000000467414d41000186a031e8965f000000b549444154789cb5905d0ac2
-3010849dbac81c42c47bf843cf253e8878b0aa17110f214bdca6be240f5d21a5
-94ced3e49bcd322c1624115515154998aa424822a82a5624a1aa8a8b24c58f99
-999908130989a04a00d76c2c09e76cf21adcb209393a6553577da17140a2c59e
-70ecbfa388dff1f03b82fb82bd07f05f7cb13f80bb07ad2fd60c011c3c588eef
-f1f4e03bbec7ce832dca927aea005e431b625796345307b019c845e6bfc3bb98
-769d84f9efb02ea6c00f9bb9ff45e81f9f280000000049454e44ae426082
-"""),
- 'basi0g16': _dehex("""
-89504e470d0a1a0a0000000d49484452000000200000002010000000017186c9
-fd0000000467414d41000186a031e8965f000000e249444154789cb5913b0ec2
-301044c7490aa8f85d81c3e4301c8f53a4ca0da8902c8144b3920b4043111282
-23bc4956681a6bf5fc3c5a3ba0448912d91a4de2c38dd8e380231eede4c4f7a1
-4677700bec7bd9b1d344689315a3418d1a6efbe5b8305ba01f8ff4808c063e26
-c60d5c81edcf6c58c535e252839e93801b15c0a70d810ae0d306b205dc32b187
-272b64057e4720ff0502154034831520154034c3df81400510cdf0015c86e5cc
-5c79c639fddba9dcb5456b51d7980eb52d8e7d7fa620a75120d6064641a05120
-b606771a05626b401a05f1f589827cf0fe44c1f0bae0055698ee8914fffffe00
-00000049454e44ae426082
-"""),
- 'basi2c08': _dehex("""
-89504e470d0a1a0a0000000d49484452000000200000002008020000018b1fdd
-350000000467414d41000186a031e8965f000000f249444154789cd59341aa04
-210c44abc07b78133d59d37333bd89d76868b566d10cf4675af8596431a11662
-7c5688919280e312257dd6a0a4cf1a01008ee312a5f3c69c37e6fcc3f47e6776
-a07f8bdaf5b40feed2d33e025e2ff4fe2d4a63e1a16d91180b736d8bc45854c5
-6d951863f4a7e0b66dcf09a900f3ffa2948d4091e53ca86c048a64390f662b50
-4a999660ced906182b9a01a8be00a56404a6ede182b1223b4025e32c4de34304
-63457680c93aada6c99b73865aab2fc094920d901a203f5ddfe1970d28456783
-26cffbafeffcd30654f46d119be4793f827387fc0d189d5bc4d69a3c23d45a7f
-db803146578337df4d0a3121fc3d330000000049454e44ae426082
-"""),
- 'basi2c16': _dehex("""
-89504e470d0a1a0a0000000d4948445200000020000000201002000001db8f01
-760000000467414d41000186a031e8965f0000020a49444154789cd5962173e3
-3010853fcf1838cc61a1818185a53e56787fa13fa130852e3b5878b4b0b03081
-b97f7030070b53e6b057a0a8912bbb9163b9f109ececbc59bd7dcf2b45492409
-d66f00eb1dd83cb5497d65456aeb8e1040913b3b2c04504c936dd5a9c7e2c6eb
-b1b8f17a58e8d043da56f06f0f9f62e5217b6ba3a1b76f6c9e99e8696a2a72e2
-c4fb1e4d452e92ec9652b807486d12b6669be00db38d9114b0c1961e375461a5
-5f76682a85c367ad6f682ff53a9c2a353191764b78bb07d8ddc3c97c1950f391
-6745c7b9852c73c2f212605a466a502705c8338069c8b9e84efab941eb393a97
-d4c9fd63148314209f1c1d3434e847ead6380de291d6f26a25c1ebb5047f5f24
-d85c49f0f22cc1d34282c72709cab90477bf25b89d49f0f351822297e0ea9704
-f34c82bc94002448ede51866e5656aef5d7c6a385cb4d80e6a538ceba04e6df2
-480e9aa84ddedb413bb5c97b3838456df2d4fec2c7a706983e7474d085fae820
-a841776a83073838973ac0413fea2f1dc4a06e71108fda73109bdae48954ad60
-bf867aac3ce44c7c1589a711cf8a81df9b219679d96d1cec3d8bbbeaa2012626
-df8c7802eda201b2d2e0239b409868171fc104ba8b76f10b4da09f6817ffc609
-c413ede267fd1fbab46880c90f80eccf0013185eb48b47ba03df2bdaadef3181
-cb8976f18e13188768170f98c0f844bb78cb04c62ddac59d09fc3fa25dfc1da4
-14deb3df1344f70000000049454e44ae426082
-"""),
- 'basi3p08': _dehex("""
-89504e470d0a1a0a0000000d494844520000002000000020080300000133a3ba
-500000000467414d41000186a031e8965f00000300504c5445224400f5ffed77
-ff77cbffff110a003a77002222ffff11ff110000222200ffac5566ff66ff6666
-ff01ff221200dcffffccff994444ff005555220000cbcbff44440055ff55cbcb
-00331a00ffecdcedffffe4ffcbffdcdc44ff446666ff330000442200ededff66
-6600ffa444ffffaaeded0000cbcbfefffffdfffeffff0133ff33552a000101ff
-8888ff00aaaa010100440000888800ffe4cbba5b0022ff22663200ffff99aaaa
-ff550000aaaa00cb630011ff11d4ffaa773a00ff4444dc6b0066000001ff0188
-4200ecffdc6bdc00ffdcba00333300ed00ed7300ffff88994a0011ffff770000
-ff8301ffbabafe7b00fffeff00cb00ff999922ffff880000ffff77008888ffdc
-ff1a33000000aa33ffff009900990000000001326600ffbaff44ffffffaaff00
-770000fefeaa00004a9900ffff66ff22220000998bff1155ffffff0101ff88ff
-005500001111fffffefffdfea4ff4466ffffff66ff003300ffff55ff77770000
-88ff44ff00110077ffff006666ffffed000100fff5ed1111ffffff44ff22ffff
-eded11110088ffff00007793ff2200dcdc3333fffe00febabaff99ffff333300
-63cb00baba00acff55ffffdcffff337bfe00ed00ed5555ffaaffffdcdcff5555
-00000066dcdc00dc00dc83ff017777fffefeffffffcbff5555777700fefe00cb
-00cb0000fe010200010000122200ffff220044449bff33ffd4aa0000559999ff
-999900ba00ba2a5500ffcbcbb4ff66ff9b33ffffbaaa00aa42880053aa00ffaa
-aa0000ed00babaffff1100fe00000044009999990099ffcc99ba000088008800
-dc00ff93220000dcfefffeaa5300770077020100cb0000000033ffedff00ba00
-ff3333edffedffc488bcff7700aa00660066002222dc0000ffcbffdcffdcff8b
-110000cb00010155005500880000002201ffffcbffcbed0000ff88884400445b
-ba00ffbc77ff99ff006600baffba00777773ed00fe00003300330000baff77ff
-004400aaffaafffefe000011220022c4ff8800eded99ff99ff55ff002200ffb4
-661100110a1100ff1111dcffbabaffff88ff88010001ff33ffb98ed362000002
-a249444154789c65d0695c0b001806f03711a9904a94d24dac63292949e5a810
-d244588a14ca5161d1a1323973252242d62157d12ae498c8124d25ca3a11398a
-16e55a3cdffab0ffe7f77d7fcff3528645349b584c3187824d9d19d4ec2e3523
-9eb0ae975cf8de02f2486d502191841b42967a1ad49e5ddc4265f69a899e26b5
-e9e468181baae3a71a41b95669da8df2ea3594c1b31046d7b17bfb86592e4cbe
-d89b23e8db0af6304d756e60a8f4ad378bdc2552ae5948df1d35b52143141533
-33bbbbababebeb3b3bc9c9c9c6c6c0c0d7b7b535323225a5aa8a02024a4bedec
-0a0a2a2bcdcd7d7cf2f3a9a9c9cdcdd8b8adcdd5b5ababa828298982824a4ab2
-b21212acadbdbc1414e2e24859b9a72730302f4f49292c4c57373c9c0a0b7372
-8c8c1c1c3a3a92936d6dfdfd293e3e26262a4a4eaea2424b4b5fbfbc9c323278
-3c0b0ba1303abaae8ecdeeed950d6669a9a7a7a141d4de9e9d5d5cdcd2229b94
-c572716132f97cb1d8db9bc3110864a39795d9db6b6a26267a7a9a98d4d6a6a7
-cb76090ef6f030354d4d75766e686030545464cb393a1a1ac6c68686eae8f8f9
-a9aa4644c8b66d6e1689dcdd2512a994cb35330b0991ad9f9b6b659596a6addd
-d8282fafae5e5323fb8f41d01f76c22fd8061be01bfc041a0323e1002c81cd30
-0b9ec027a0c930014ec035580fc3e112bc069a0b53e11c0c8095f00176c163a0
-e5301baec06a580677600ddc05ba0f13e120bc81a770133ec355a017300d4ec2
-0c7800bbe1219c02fa08f3e13c1c85dbb00a2ec05ea0dff00a6ec15a98027360
-070c047a06d7e1085c84f1b014f6c03fa0b33018b6c0211801ebe018fc00da0a
-6f61113c877eb01d4ec317a085700f26c130f80efbe132bc039a0733e106fc81
-f7f017f6c10aa0d1300a0ec374780943e1382c06fa0a9b60238c83473016cec0
-02f80f73fefe1072afc1e50000000049454e44ae426082
-"""),
- 'basi6a08': _dehex("""
-89504e470d0a1a0a0000000d4948445200000020000000200806000001047d4a
-620000000467414d41000186a031e8965f0000012049444154789cc595414ec3
-3010459fa541b8bbb26641b8069b861e8b4d12c1c112c1452a710a2a65d840d5
-949041fc481ec98ae27c7f3f8d27e3e4648047600fec0d1f390fbbe2633a31e2
-9389e4e4ea7bfdbf3d9a6b800ab89f1bd6b553cfcbb0679e960563d72e0a9293
-b7337b9f988cc67f5f0e186d20e808042f1c97054e1309da40d02d7e27f92e03
-6cbfc64df0fc3117a6210a1b6ad1a00df21c1abcf2a01944c7101b0cb568a001
-909c9cf9e399cf3d8d9d4660a875405d9a60d000b05e2de55e25780b7a5268e0
-622118e2399aab063a815808462f1ab86890fc2e03e48bb109ded7d26ce4bf59
-0db91bac0050747fec5015ce80da0e5700281be533f0ce6d5900b59bcb00ea6d
-200314cf801faab200ea752803a8d7a90c503a039f824a53f4694e7342000000
-0049454e44ae426082
-"""),
- 'basn0g01': _dehex("""
-89504e470d0a1a0a0000000d49484452000000200000002001000000005b0147
-590000000467414d41000186a031e8965f0000005b49444154789c2dccb10903
-300c05d1ebd204b24a200b7a346f90153c82c18d0a61450751f1e08a2faaead2
-a4846ccea9255306e753345712e211b221bf4b263d1b427325255e8bdab29e6f
-6aca30692e9d29616ee96f3065f0bf1f1087492fd02f14c90000000049454e44
-ae426082
-"""),
- 'basn0g02': _dehex("""
-89504e470d0a1a0a0000000d49484452000000200000002002000000001ca13d
-890000000467414d41000186a031e8965f0000001f49444154789c6360085df5
-1f8cf1308850c20053868f0133091f6390b90700bd497f818b0989a900000000
-49454e44ae426082
-"""),
- # A version of basn0g04 dithered down to 3 bits.
- 'Basn0g03': _dehex("""
-89504e470d0a1a0a0000000d494844520000002000000020040000000093e1c8
-2900000001734249540371d88211000000fd49444154789c6d90d18906210c84
-c356f22356b2889588604301b112112b11d94a96bb495cf7fe87f32d996f2689
-44741cc658e39c0b118f883e1f63cc89dafbc04c0f619d7d898396c54b875517
-83f3a2e7ac09a2074430e7f497f00f1138a5444f82839c5206b1f51053cca968
-63258821e7f2b5438aac16fbecc052b646e709de45cf18996b29648508728612
-952ca606a73566d44612b876845e9a347084ea4868d2907ff06be4436c4b41a3
-a3e1774285614c5affb40dbd931a526619d9fa18e4c2be420858de1df0e69893
-a0e3e5523461be448561001042b7d4a15309ce2c57aef2ba89d1c13794a109d7
-b5880aa27744fc5c4aecb5e7bcef5fe528ec6293a930690000000049454e44ae
-426082
-"""),
- 'basn0g04': _dehex("""
-89504e470d0a1a0a0000000d494844520000002000000020040000000093e1c8
-290000000467414d41000186a031e8965f0000004849444154789c6360601014
-545232367671090d4d4b2b2f6720430095dbd1418e002a77e64c720450b9ab56
-912380caddbd9b1c0154ee9933e408a072efde25470095fbee1d1902001f14ee
-01eaff41fa0000000049454e44ae426082
-"""),
- 'basn0g08': _dehex("""
-89504e470d0a1a0a0000000d4948445200000020000000200800000000561125
-280000000467414d41000186a031e8965f0000004149444154789c6364602400
-1408c8b30c05058c0f0829f8f71f3f6079301c1430ca11906764a2795c0c0605
-8c8ff0cafeffcff887e67131181430cae0956564040050e5fe7135e2d8590000
-000049454e44ae426082
-"""),
- 'basn0g16': _dehex("""
-89504e470d0a1a0a0000000d49484452000000200000002010000000000681f9
-6b0000000467414d41000186a031e8965f0000005e49444154789cd5d2310ac0
-300c4351395bef7fc6dca093c0287b32d52a04a3d98f3f3880a7b857131363a0
-3a82601d089900dd82f640ca04e816dc06422640b7a03d903201ba05b7819009
-d02d680fa44c603f6f07ec4ff41938cf7f0016d84bd85fae2b9fd70000000049
-454e44ae426082
-"""),
- 'basn2c08': _dehex("""
-89504e470d0a1a0a0000000d4948445200000020000000200802000000fc18ed
-a30000000467414d41000186a031e8965f0000004849444154789cedd5c10900
-300c024085ec91fdb772133b442bf4a1f8cee12bb40d043b800a14f81ca0ede4
-7d4c784081020f4a871fc284071428f0a0743823a94081bb7077a3c00182b1f9
-5e0f40cf4b0000000049454e44ae426082
-"""),
- 'basn2c16': _dehex("""
-89504e470d0a1a0a0000000d4948445200000020000000201002000000ac8831
-e00000000467414d41000186a031e8965f000000e549444154789cd596c10a83
-301044a7e0417fcb7eb7fdadf6961e06039286266693cc7a188645e43dd6a08f
-1042003e2fe09aef6472737e183d27335fcee2f35a77b702ebce742870a23397
-f3edf2705dd10160f3b2815fe8ecf2027974a6b0c03f74a6e4192843e75c6c03
-35e8ec3202f5e84c0181bbe8cca967a00d9df3491bb040671f2e6087ce1c2860
-8d1e05f8c7ee0f1d00b667e70df44467ef26d01fbd9bc028f42860f71d188bce
-fb8d3630039dbd59601e7ab3c06cf428507f0634d039afdc80123a7bb1801e7a
-b1802a7a14c89f016d74ce331bf080ce9e08f8414f04bca133bfe642fe5e07bb
-c4ec0000000049454e44ae426082
-"""),
- 'basn6a08': _dehex("""
-89504e470d0a1a0a0000000d4948445200000020000000200806000000737a7a
-f40000000467414d41000186a031e8965f0000006f49444154789cedd6310a80
-300c46e12764684fa1f73f55048f21c4ddc545781d52e85028fc1f4d28d98a01
-305e7b7e9cffba33831d75054703ca06a8f90d58a0074e351e227d805c8254e3
-1bb0420f5cdc2e0079208892ffe2a00136a07b4007943c1004d900195036407f
-011bf00052201a9c160fb84c0000000049454e44ae426082
-"""),
- 'cs3n3p08': _dehex("""
-89504e470d0a1a0a0000000d494844520000002000000020080300000044a48a
-c60000000467414d41000186a031e8965f0000000373424954030303a392a042
-00000054504c544592ff0000ff9200ffff00ff0000dbff00ff6dffb600006dff
-b6ff00ff9200dbff000049ffff2400ff000024ff0049ff0000ffdb00ff4900ff
-b6ffff0000ff2400b6ffffdb000092ffff6d000024ffff49006dff00df702b17
-0000004b49444154789c85cac70182000000b1b3625754b0edbfa72324ef7486
-184ed0177a437b680bcdd0031c0ed00ea21f74852ed00a1c9ed0086da0057487
-6ed0121cd6d004bda0013a421ff803224033e177f4ae260000000049454e44ae
-426082
-"""),
- 's09n3p02': _dehex("""
-89504e470d0a1a0a0000000d49484452000000090000000902030000009dffee
-830000000467414d41000186a031e8965f000000037342495404040477f8b5a3
-0000000c504c544500ff000077ffff00ffff7700ff5600640000001f49444154
-789c63600002fbff0c0c56ab19182ca381581a4283f82071200000696505c36a
-437f230000000049454e44ae426082
-"""),
- 'tbgn3p08': _dehex("""
-89504e470d0a1a0a0000000d494844520000002000000020080300000044a48a
-c60000000467414d41000186a031e8965f00000207504c54457f7f7fafafafab
-abab110000222200737300999999510d00444400959500959595e6e600919191
-8d8d8d620d00898989666600b7b700911600000000730d007373736f6f6faaaa
-006b6b6b676767c41a00cccc0000f30000ef00d51e0055555567670000dd0051
-515100d1004d4d4de61e0038380000b700160d0d00ab00560d00090900009500
-009100008d003333332f2f2f2f2b2f2b2b000077007c7c001a05002b27000073
-002b2b2b006f00bb1600272727780d002323230055004d4d00cc1e00004d00cc
-1a000d00003c09006f6f00002f003811271111110d0d0d55554d090909001100
-4d0900050505000d00e2e200000900000500626200a6a6a6a2a2a29e9e9e8484
-00fb00fbd5d500801100800d00ea00ea555500a6a600e600e6f7f700e200e233
-0500888888d900d9848484c01a007777003c3c05c8c8008080804409007c7c7c
-bb00bbaa00aaa600a61e09056262629e009e9a009af322005e5e5e05050000ee
-005a5a5adddd00a616008d008d00e20016050027270088110078780000c40078
-00787300736f006f44444400aa00c81e004040406600663c3c3c090000550055
-1a1a00343434d91e000084004d004d007c004500453c3c00ea1e00222222113c
-113300331e1e1efb22001a1a1a004400afaf00270027003c001616161e001e0d
-160d2f2f00808000001e00d1d1001100110d000db7b7b7090009050005b3b3b3
-6d34c4230000000174524e530040e6d86600000001624b474402660b7c640000
-01f249444154789c6360c0048c8c58049100575f215ee92e6161ef109cd2a15e
-4b9645ce5d2c8f433aa4c24f3cbd4c98833b2314ab74a186f094b9c2c27571d2
-6a2a58e4253c5cda8559057a392363854db4d9d0641973660b0b0bb76bb16656
-06970997256877a07a95c75a1804b2fbcd128c80b482a0b0300f8a824276a9a8
-ec6e61612b3e57ee06fbf0009619d5fac846ac5c60ed20e754921625a2daadc6
-1967e29e97d2239c8aec7e61fdeca9cecebef54eb36c848517164514af16169e
-866444b2b0b7b55534c815cc2ec22d89cd1353800a8473100a4485852d924a6a
-412adc74e7ad1016ceed043267238c901716f633a812022998a4072267c4af02
-92127005c0f811b62830054935ce017b38bf0948cc5c09955f030a24617d9d46
-63371fd940b0827931cbfdf4956076ac018b592f72d45594a9b1f307f3261b1a
-084bc2ad50018b1900719ba6ba4ca325d0427d3f6161449486f981144cf3100e
-2a5f2a1ce8683e4ddf1b64275240c8438d98af0c729bbe07982b8a1c94201dc2
-b3174c9820bcc06201585ad81b25b64a2146384e3798290c05ad280a18c0a62e
-e898260c07fca80a24c076cc864b777131a00190cdfa3069035eccbc038c30e1
-3e88b46d16b6acc5380d6ac202511c392f4b789aa7b0b08718765990111606c2
-9e854c38e5191878fbe471e749b0112bb18902008dc473b2b2e8e72700000000
-49454e44ae426082
-"""),
- 'Tp2n3p08': _dehex("""
-89504e470d0a1a0a0000000d494844520000002000000020080300000044a48a
-c60000000467414d41000186a031e8965f00000300504c544502ffff80ff05ff
-7f0703ff7f0180ff04ff00ffff06ff000880ff05ff7f07ffff06ff000804ff00
-0180ff02ffff03ff7f02ffff80ff0503ff7f0180ffff0008ff7f0704ff00ffff
-06ff000802ffffff7f0704ff0003ff7fffff0680ff050180ff04ff000180ffff
-0008ffff0603ff7f80ff05ff7f0702ffffff000880ff05ffff0603ff7f02ffff
-ff7f070180ff04ff00ffff06ff000880ff050180ffff7f0702ffff04ff0003ff
-7fff7f0704ff0003ff7f0180ffffff06ff000880ff0502ffffffff0603ff7fff
-7f0702ffff04ff000180ff80ff05ff0008ff7f07ffff0680ff0504ff00ff0008
-0180ff03ff7f02ffff02ffffffff0604ff0003ff7f0180ffff000880ff05ff7f
-0780ff05ff00080180ff02ffffff7f0703ff7fffff0604ff00ff7f07ff0008ff
-ff0680ff0504ff0002ffff0180ff03ff7fff0008ffff0680ff0504ff000180ff
-02ffff03ff7fff7f070180ff02ffff04ff00ffff06ff0008ff7f0780ff0503ff
-7fffff06ff0008ff7f0780ff0502ffff03ff7f0180ff04ff0002ffffff7f07ff
-ff0604ff0003ff7fff00080180ff80ff05ffff0603ff7f0180ffff000804ff00
-80ff0502ffffff7f0780ff05ffff0604ff000180ffff000802ffffff7f0703ff
-7fff0008ff7f070180ff03ff7f02ffff80ff05ffff0604ff00ff0008ffff0602
-ffff0180ff04ff0003ff7f80ff05ff7f070180ff04ff00ff7f0780ff0502ffff
-ff000803ff7fffff0602ffffff7f07ffff0680ff05ff000804ff0003ff7f0180
-ff02ffff0180ffff7f0703ff7fff000804ff0080ff05ffff0602ffff04ff00ff
-ff0603ff7fff7f070180ff80ff05ff000803ff7f0180ffff7f0702ffffff0008
-04ff00ffff0680ff0503ff7f0180ff04ff0080ff05ffff06ff000802ffffff7f
-0780ff05ff0008ff7f070180ff03ff7f04ff0002ffffffff0604ff00ff7f07ff
-000880ff05ffff060180ff02ffff03ff7f80ff05ffff0602ffff0180ff03ff7f
-04ff00ff7f07ff00080180ffff000880ff0502ffff04ff00ff7f0703ff7fffff
-06ff0008ffff0604ff00ff7f0780ff0502ffff03ff7f0180ffdeb83387000000
-f874524e53000000000000000008080808080808081010101010101010181818
-1818181818202020202020202029292929292929293131313131313131393939
-393939393941414141414141414a4a4a4a4a4a4a4a52525252525252525a5a5a
-5a5a5a5a5a62626262626262626a6a6a6a6a6a6a6a73737373737373737b7b7b
-7b7b7b7b7b83838383838383838b8b8b8b8b8b8b8b94949494949494949c9c9c
-9c9c9c9c9ca4a4a4a4a4a4a4a4acacacacacacacacb4b4b4b4b4b4b4b4bdbdbd
-bdbdbdbdbdc5c5c5c5c5c5c5c5cdcdcdcdcdcdcdcdd5d5d5d5d5d5d5d5dedede
-dededededee6e6e6e6e6e6e6e6eeeeeeeeeeeeeeeef6f6f6f6f6f6f6f6b98ac5
-ca0000012c49444154789c6360e7169150d230b475f7098d4ccc28a96ced9e32
-63c1da2d7b8e9fb97af3d1fb8f3f18e8a0808953544a4dd7c4c2c9233c2621bf
-b4aab17fdacce5ab36ee3a72eafaad87efbefea68702362e7159652d031b07cf
-c0b8a4cce28aa68e89f316aedfb4ffd0b92bf79fbcfcfe931e0a183904e55435
-8decdcbcc22292b3caaadb7b27cc5db67af3be63e72fdf78fce2d31f7a2860e5
-119356d037b374f10e8a4fc92eaa6fee99347fc9caad7b0f9ebd74f7c1db2fbf
-e8a180995f484645dbdccad12f38363dafbcb6a573faeca5ebb6ed3e7ce2c29d
-e76fbefda38702063e0149751d537b67ff80e8d4dcc29a86bea97316add9b0e3
-c0e96bf79ebdfafc971e0a587885e515f58cad5d7d43a2d2720aeadaba26cf5a
-bc62fbcea3272fde7efafac37f3a28000087c0fe101bc2f85f0000000049454e
-44ae426082
-"""),
- 'tbbn1g04': _dehex("""
-89504e470d0a1a0a0000000d494844520000002000000020040000000093e1c8
-290000000467414d41000186a031e8965f0000000274524e530007e8f7589b00
-000002624b47440000aa8d23320000013e49444154789c55d1cd4b024118c7f1
-efbe6419045b6a48a72d352808b435284f9187ae9b098627a1573a19945beba5
-e8129e8222af11d81e3a4545742de8ef6af6d5762e0fbf0fc33c33f36085cb76
-bc4204778771b867260683ee57e13f0c922df5c719c2b3b6c6c25b2382cea4b9
-9f7d4f244370746ac71f4ca88e0f173a6496749af47de8e44ba8f3bf9bdfa98a
-0faf857a7dd95c7dc8d7c67c782c99727997f41eb2e3c1e554152465bb00fe8e
-b692d190b718d159f4c0a45c4435915a243c58a7a4312a7a57913f05747594c6
-46169866c57101e4d4ce4d511423119c419183a3530cc63db88559ae28e7342a
-1e9c8122b71139b8872d6e913153224bc1f35b60e4445bd4004e20ed6682c759
-1d9873b3da0fbf50137dc5c9bde84fdb2ec8bde1189e0448b63584735993c209
-7a601bd2710caceba6158797285b7f2084a2f82c57c01a0000000049454e44ae
-426082
-"""),
- 'tbrn2c08': _dehex("""
-89504e470d0a1a0a0000000d4948445200000020000000200802000000fc18ed
-a30000000467414d41000186a031e8965f0000000674524e53007f007f007f8a
-33334f00000006624b474400ff0000000033277cf3000004d649444154789cad
-965f68537714c73fd912d640235e692f34d0406fa0c1663481045ab060065514
-56660a295831607df0a1488715167060840a1614e6431e9cb34fd2c00a762c85
-f6a10f816650c13b0cf40612e1822ddc4863bd628a8924d23d6464f9d3665dd9
-f7e977ce3dbff3cd3939bfdfef6bb87dfb364782dbed065ebe7cd93acc78b4ec
-a228debd7bb7bfbfbfbbbbfb7f261045311a8d261209405194274f9ea4d3e916
-f15f1c3eb5dd6e4fa5fecce526239184a2b0b8486f6f617171b1f5ae4311381c
-8e57af5e5dbd7a351088150a78bd389d44222c2f93cdfe66b7db8f4ee07038b6
-b6b6bebf766d7e7e7e60a06432313b4ba984c3c1c4049a46b95c5a58583822c1
-dbb76f27272733d1b9df853c3030c0f232562b9108cf9eb1b888d7cbf030abab
-31abd5fa1f08dc6ef7e7cf9f1f3f7e1c8944745d4f1400c62c001313acad21cb
-b8dd2c2c603271eb1640341aad4c6d331aa7e8c48913a150a861307ecc11e964
-74899919bc5e14e56fffc404f1388502f178dceff7ef4bf0a5cfe7abb533998c
-e5f9ea2f1dd88c180d64cb94412df3dd57e83a6b3b3c7a84c98420100c72fd3a
-636348bae726379fe69e8e8d8dbd79f3a6558b0607079796965256479b918085
-7b02db12712b6181950233023f3f647494ee6e2e5ea45864cce5b8a7fe3acffc
-3aebb22c2bd5d20e22d0757d7b7bbbbdbd3d94a313bed1b0aa3cd069838b163a
-8d4c59585f677292d0b84d9a995bd337def3fe6bbe5e6001989b9b6bfe27ea08
-36373781542ab56573248b4c5bc843ac4048c7ab21aa24ca00534c25482828a3
-8c9ee67475bbaaaab22cb722c8e57240a150301a8d219de94e44534d7d90e885
-87acb0e2c4f9800731629b6c5ee14a35a6b9887d2a0032994cb9cf15dbe59650
-ff7b46a04c9a749e7cc5112214266cc65c31354d5b5d5d3d90209bcd5616a552
-a95c2e87f2a659bd9ee01c2cd73964e438f129a6aa9e582c363838b80f81d7eb
-5555b56a2a8ad2d9d7affd0409f8015c208013fea00177b873831b0282c964f2
-783c1e8fa7582cee5f81a669b5e6eeeeaee58e8559b0c233d8843c7c0b963a82
-34e94b5cb2396d7d7d7db22c8ba258fb0afd43f0e2c58b919191ba9de9b4d425
-118329b0c3323c8709d02041b52b4ea7f39de75d2a934a2693c0a953a76a93d4
-5d157ebf7f6565a5542a553df97c5e10045dd731c130b86113cc300cbd489224
-08422a952a140a95788fc763b1d41558d7a2d7af5f5fb870a1d6a3aaaacd6603
-18802da84c59015bd2e6897b745d9765b99a1df0f97c0daf74e36deaf7fbcd66
-73ad2797cb89a2c839880188a2e8743a8bc5a22ccbba5e376466b3b9bdbdbd21
-6123413a9d0e0402b51e4dd3bababa788eb022b85caeb6b6364551b6b7b76942
-43f7f727007a7a7a04a1ee8065b3595fde2768423299ac1ec6669c3973e65004
-c0f8f878ad69341a33994ced2969c0d0d0502412f9f8f163f3a7fd654b474787
-288ad53e74757535df6215b85cae60302849d2410aecc037f9f2e5cbd5b5c160
-680eb0dbede170381c0e7ff8f0a185be3b906068684892a4ca7a6f6faff69328
-8ad3d3d3f7efdfdfdbdbfb57e96868a14d0d0643381c96242997cbe5f3794010
-84603078fcf8f1d6496bd14a3aba5c2ea7d369341a5555b5582c8140e0fcf9f3
-1b1b1b87cf4eeb0a8063c78e45a3d19e9e1ebfdfdf5a831e844655d18093274f
-9e3d7bf6d3a74f3b3b3b47c80efc05ff7af28fefb70d9b0000000049454e44ae
-426082
-"""),
- 'basn6a16': _dehex("""
-89504e470d0a1a0a0000000d494844520000002000000020100600000023eaa6
-b70000000467414d41000186a031e8965f00000d2249444154789cdd995f6c1c
-d775c67ff38fb34b724d2ee55a8e4b04a0ac87049100cab4dbd8c6528902cb4d
-10881620592e52d4325ac0905bc98a94025e71fd622cb5065ac98a0c283050c0
-728a00b6e542a1d126885cd3298928891d9a0444037e904434951d4b90b84b2f
-c9dde1fcebc33977a95555348f411e16dfce9d3b77ee77eebde77ce78c95a669
-0ad07c17009a13edd898b87dfb1fcb7d2b4d1bff217f33df80deb1e6267df0ff
-c1e6e6dfafdf1f5a7fd30f9aef66b6d546dd355bf02c40662e3307f9725a96c6
-744c3031f83782f171c148dbc3bf1774f5dad1e79d6f095a3f54d4fbec5234ef
-d9a2f8d73afe4f14f57ef4f42def7b44f19060f06b45bddf1c5534d77fd922be
-2973a15a82e648661c6e3240aa3612ead952b604bde57458894f29deaf133bac
-13d2766f5227a4a3b8cf08da7adfd6fbd6bd8a4fe9dbb43d35e3dfa3f844fbf8
-9119bf4f7144094fb56333abf8a86063ca106f94b3a3b512343765e60082097f
-1bb86ba72439a653519b09f5cee1ce61c897d37eedf5553580ae60f4af8af33a
-b14fd400b6a0f34535c0434afc0b3a9f07147527a5fa7ca218ff56c74d74dc3f
-155cfd3325fc278acf2ae1cb4a539f5f9937c457263b0bd51234c732a300cdd1
-cc1840f0aaff54db0e4874ed5a9b5d6d27d4bb36746d80de72baa877ff4b275a
-d7895ed1897ea4139b5143fcbb1a62560da1ed9662aaed895ec78a91c18795b8
-5e07ab4af8ba128e95e682e0728bf8f2e5ae815a091a53d902ac1920d8e05f06
-589de8d8d66680789f4e454fb9d9ec66cd857af796ee2d902fa73fd5bba775a2
-153580ae44705ed0d37647d15697cb8f14bfa3e3e8fdf8031d47af571503357c
-f30d25acedcbbf135c9a35c49766ba07ab255859e8ec03684e66860182dff8f7
-0304bff6ff1c20fc81b7afdd00a71475539a536e36bb5973a19e3b923b02bde5
-e4efd4003ac170eb2d13fe274157afedbd82d6fb3a9a1e85e4551d47cf7078f8
-9671fe4289ebf5f2bf08d63f37c4eb4773c55a0996efeefa0ca011671d8060ca
-2f0004c7fcc300e166ef0240f825efe3361f106d57d423d0723f7acacd66376b
-2ed47b7a7a7a205f4ef4ac4691e0aad9aa0d41cf13741c3580a506487574ddca
-61a8c403c1863ebfbcac3475168b2de28b8b3d77544bb05ce92a02aceced3c0d
-d0cc65ea371b201cf1c601c24dde1c4078cedbdeb60322f50126a019bf6edc9b
-39e566b39b3517eaf97c3e0fbde5e4491d45bd74537145d155b476aa0176e868
-c6abebf30dbd5e525c54ac8e18e2d56abeb756827a3d970358a97416019a6f64
-f60004fdfe1580d5c98e618070cc1b05887eee7e0d209a70db7d8063029889b4
-c620ead78d7b33a7dc6c76b3e6427ddddbebde867c393aa7845e5403e8ca794a
-d0d6fb897af5f03525fe5782f5e7046bdaef468bf88d1debc6ab25583cd17310
-6079b9ab0ba059c914018245bf076075b5a303200c3c1f209a733701444fbbaf
-00c4134ebb016c5d0b23614c243701cdf875e3decce9349bddacb9505fbf7dfd
-76e82d87736a00f5d2b5ffd4b7dce2719a4d25ae717ee153c1abef18e257cfad
-7fa45682da48ef38c052b53b0fd06864b300c151ff08c0ea431de701a287dd5f
-004497dc7b01a253ee3e80b8c7f91c20f967fb6fdb7c80ada7d8683723614c24
-3701cdf875e3decc29379bddacb950ef3fd47f08f2e5a61ea4aa2a3eb757cd55
-13345efcfa59c12b2f19e2578ef77fb75a82854ffbee01a83f977b11a031931d
-040802df07082b5e11207cc17b1e209a770700e2df0a83e409fb7580f827c230
-99b06fd901fb058d6835dacd481813c94d40337eddb83773cacd66376b2ed437
-bebcf165e82d2f4e4beb7f3fa6e652c2d7ee10bc78c010bfb87fe3c95a09ae9f
-bd732740bd2fb700d0f865f64180e059ff044018ca0ca28a5b04883f701e0088
-bfec7c0c909cb71f0448c6ec518074b375012079d9dedf66004bcfbc51eb2dd1
-aadacd481813c94d40337eddb83773cacd66376b2ed487868686205fbe7c49ef
-5605a73f34c4a7a787eeab96e0da81bb4e022c15ba27019a5b339300e16bf286
-a8eae601e25866907cdf3e0890acb36f00245fb57f05904e59c300e92561946e
-b2e600d209ab7d07f04d458dfb46ad1bd16ab49b913026929b8066fcba716fe6
-949bcd6ed65ca8ef7e7cf7e3d05b7e7c8f217ee6cdddbb6a25a856f37980e0c7
-fe4e80a82623c48193014846ec7180f4acf518409aca0cd28a5504e03b32c374
-de1a00608a0240faaa327a4b19fe946fb6f90054dbb5f2333d022db56eb4966a
-3723614c243701cdf8f556bea8a7dc6c76b3e66bd46584ddbbcebc0990cf4b0f
-ff4070520c282338a7e26700ec725202b01e4bcf0258963c6f1d4d8f0030cb20
-805549c520930c03584fa522b676f11600ffc03fde3e1b3489a9c9054c9aa23b
-c08856a3dd8c843191dc0434e3d78d7b33a75c36fb993761f7ae5a69f72ef97f
-e6ad336fed7e1c60e8bee96980bbdebbb60da07b7069062033d9dc0ae03d296f
-70ab511ec071640676252902d833c916007b3e1900b0a6d2028035968e025861
-ea01581369fb11488c34d18cbc95989afccca42baad65ba2d5683723614c24d7
-8066fcbab8b7e96918baaf5aaa56219f975fb50a43f7c9bde90fa73f1c1a02d8
-78f2e27e803b77ca08b90519315b6fe400fc1392097a9eccc0ad444500e70199
-a1331f0f00d8934901c07e5d526ceb87c2d07e2579badd005a2b31a5089391b7
-1253358049535a6add8856dd0146c298482e01ede27ed878b256ba7600ee3a09
-c18fc1df09fe01084ec25defc1b56db0f1a4f4bd78e0e2818d2f0334e7330300
-7df7c888b917e50dd9c1c60c80efcb0cbc63e1f700bce7c31700dccbd1060027
-8add9b0de06c8e2f00d84962b7d7030e2a61538331b98051f92631bd253f336a
-dd8856a3dd44c25c390efddfad96ae9f853b77c25201ba27c533b8bdf28b6ad0
-3d084b33d2e7fa59099e9901b8f2d29597fa0f01848f78e70082117f1ca07b76
-6910209b9519f895a008d031bbba05c09d8f06005c5b18b8fba25300cea6780e
-c03e911c6ccf06d507b48a4fa606634a114609de929f9934c5a87511ad57cfc1
-fa476aa5854fa1ef1e3910b905686e85cc24c40138198915f133d2d6dc2a7dea
-7df2ccc2a752faf2cec1d577aebeb37e3b4034eeee0008dff3be0e6b923773b4
-7904c0ef9119767cb4fa1500ef1361e08e452500f71561e84cc4ed3e20fab6a2
-c905f40cb76a3026bf3319b91ac2e46792a6dcd801ebc6aba5da08f48ecb81c8
-bd088d5f42f6417191de93908c803d0e76199292b485af41b60e8d9c3c537f0e
-8211f0c7211a077707dc18b931b2ee6d80a4d7ae024491ebc24d4a708ff70680
-7f25e807e8785f1878e322d6ddaf453f0770ff2dfa769b01423dbbad72a391b6
-5a7c3235985629423372494cab55c8f7d64a8b27a0e7202c55a13b0f8d19c80e
-4ae9ca3f015115dc3ca467c17a4c7ee95970ab10e5a54ff0ac3cd39881ee5958
-1a84f03df0be0e492fd855a8d6aa35d10b4962dbb0a604a3d3ee5e80a8eee600
-a24977f8660378bf0bbf00e01d0a8fb7f980f04b8aa6ce6aca8d5a7533c52753
-839152c4e222f4dc512dd5eb90cbc981e8ea12cf90cd8a8bf47d89159e2741d3
-7124f65b96fcd254dae258fa84a13c13043246a32129574787e49eae2b49b86d
-c3e2e78b9ff7f4002415bb08907c66df0d103b4e0c104db90500ff70700c203a
-ee1e82dba4c3e16e256c0acca6ceaae9afd1f612d7eb472157ac95962bd05594
-7dd1598466053245088e827f44628657942a825b84e4fb601f84b4025611aca3
-901e01bb024911dc0a4445f08e41f83df02b10142173149ab71baf027611ea95
-7a257704201d14cd9af4d90b00f194530088cb4e09c0df1c5c0088f7393f6833
-c0aa3ac156655de3bca9b34ab9716906ba07aba5e5bba1eb3358d90b9da7c533
-64f6888bf47b60f521e8380fe10be03d2feac17900927560df40f4e48f805960
-50328d648bf4893f9067c217a0631656b7c898c122847bc07b03a2d3e0ee85e4
-33b0ef867450c4fad2ecd26cf7168074c0ba0c904cdac300c9cfec4701924df6
-1cdca61e10685c6f7d52d0caba1498972f43d740adb4b2009d7d7220b20e3473
-90a943d00ffe959bb6eac3e0fe42ea49ee00c45f06e76329b1dabf127d690d80
-5581b408f63c2403e0cc433c00ee658836803b0fd100747c04ab5f917704fd10
-d5c1cd41ec801343d207f602a403605d86e5f9e5f9ae0d00e994556833806685
-c931fb709b0f08b4e869bea5c827859549e82c544b8d29c816a0390999613920
-7e610d5727a16318c2003c1fa24be0de2b32caf92224e7c17e5004b6350c4c01
-05601218066b0ad28224e149019c086257ca315102de2712903bde97b8144d82
-3b2c6ac52d403c054e019249b087f53d0558995a99ea946c70cc927458b3c1ff
-550f30050df988d4284376b4566a8e416654cc921985e037e0df0fc131f00f4b
-acf0c6211c036f14a239703741740adc7da227edd7e56b833d0ae92549b4d357
-25dfb49ed2ff63908e6adf27d6d0dda7638d4154d2778daca17f58e61297c129
-41f233b01f5dc3740cac51688c35c6b22580f48224fee9b83502569a66b629f1
-09f3713473413e2666e7fe6f6c6efefdfafda1f56f6e06f93496d9d67cb7366a
-9964b6f92e64b689196ec6c604646fd3fe4771ff1bf03f65d8ecc3addbb5f300
-00000049454e44ae426082
-"""),
-}
-
-def test_suite(options, args):
- """
- Create a PNG test image and write the file to stdout.
- """
-
- # Below is a big stack of test image generators.
- # They're all really tiny, so PEP 8 rules are suspended.
-
- def test_gradient_horizontal_lr(x, y): return x
- def test_gradient_horizontal_rl(x, y): return 1-x
- def test_gradient_vertical_tb(x, y): return y
- def test_gradient_vertical_bt(x, y): return 1-y
- def test_radial_tl(x, y): return max(1-math.sqrt(x*x+y*y), 0.0)
- def test_radial_center(x, y): return test_radial_tl(x-0.5, y-0.5)
- def test_radial_tr(x, y): return test_radial_tl(1-x, y)
- def test_radial_bl(x, y): return test_radial_tl(x, 1-y)
- def test_radial_br(x, y): return test_radial_tl(1-x, 1-y)
- def test_stripe(x, n): return float(int(x*n) & 1)
- def test_stripe_h_2(x, y): return test_stripe(x, 2)
- def test_stripe_h_4(x, y): return test_stripe(x, 4)
- def test_stripe_h_10(x, y): return test_stripe(x, 10)
- def test_stripe_v_2(x, y): return test_stripe(y, 2)
- def test_stripe_v_4(x, y): return test_stripe(y, 4)
- def test_stripe_v_10(x, y): return test_stripe(y, 10)
- def test_stripe_lr_10(x, y): return test_stripe(x+y, 10)
- def test_stripe_rl_10(x, y): return test_stripe(1+x-y, 10)
- def test_checker(x, y, n): return float((int(x*n) & 1) ^ (int(y*n) & 1))
- def test_checker_8(x, y): return test_checker(x, y, 8)
- def test_checker_15(x, y): return test_checker(x, y, 15)
- def test_zero(x, y): return 0
- def test_one(x, y): return 1
-
- test_patterns = {
- 'GLR': test_gradient_horizontal_lr,
- 'GRL': test_gradient_horizontal_rl,
- 'GTB': test_gradient_vertical_tb,
- 'GBT': test_gradient_vertical_bt,
- 'RTL': test_radial_tl,
- 'RTR': test_radial_tr,
- 'RBL': test_radial_bl,
- 'RBR': test_radial_br,
- 'RCTR': test_radial_center,
- 'HS2': test_stripe_h_2,
- 'HS4': test_stripe_h_4,
- 'HS10': test_stripe_h_10,
- 'VS2': test_stripe_v_2,
- 'VS4': test_stripe_v_4,
- 'VS10': test_stripe_v_10,
- 'LRS': test_stripe_lr_10,
- 'RLS': test_stripe_rl_10,
- 'CK8': test_checker_8,
- 'CK15': test_checker_15,
- 'ZERO': test_zero,
- 'ONE': test_one,
- }
-
- def test_pattern(width, height, bitdepth, pattern):
- """Create a single plane (monochrome) test pattern. Returns a
- flat row flat pixel array.
- """
-
- maxval = 2**bitdepth-1
- if maxval > 255:
- a = array('H')
- else:
- a = array('B')
- fw = float(width)
- fh = float(height)
- pfun = test_patterns[pattern]
- for y in range(height):
- fy = float(y)/fh
- for x in range(width):
- a.append(int(round(pfun(float(x)/fw, fy) * maxval)))
- return a
-
- def test_rgba(size=256, bitdepth=8,
- red="GTB", green="GLR", blue="RTL", alpha=None):
- """
- Create a test image. Each channel is generated from the
- specified pattern; any channel apart from red can be set to
- None, which will cause it not to be in the image. It
- is possible to create all PNG channel types (L, RGB, LA, RGBA),
- as well as non PNG channel types (RGA, and so on).
- """
-
- i = test_pattern(size, size, bitdepth, red)
- psize = 1
- for channel in (green, blue, alpha):
- if channel:
- c = test_pattern(size, size, bitdepth, channel)
- i = interleave_planes(i, c, psize, 1)
- psize += 1
- return i
-
- def pngsuite_image(name):
- """
- Create a test image by reading an internal copy of the files
- from the PngSuite. Returned in flat row flat pixel format.
- """
-
- if name not in _pngsuite:
- raise NotImplementedError("cannot find PngSuite file %s (use -L for a list)" % name)
- r = Reader(bytes=_pngsuite[name])
- w,h,pixels,meta = r.asDirect()
- assert w == h
- # LAn for n < 8 is a special case for which we need to rescale
- # the data.
- if meta['greyscale'] and meta['alpha'] and meta['bitdepth'] < 8:
- factor = 255 // (2**meta['bitdepth']-1)
- def rescale(data):
- for row in data:
- yield map(factor.__mul__, row)
- pixels = rescale(pixels)
- meta['bitdepth'] = 8
- arraycode = 'BH'[meta['bitdepth']>8]
- return w, array(arraycode, itertools.chain(*pixels)), meta
-
- # The body of test_suite()
- size = 256
- if options.test_size:
- size = options.test_size
- options.bitdepth = options.test_depth
- options.greyscale=bool(options.test_black)
-
- kwargs = {}
- if options.test_red:
- kwargs["red"] = options.test_red
- if options.test_green:
- kwargs["green"] = options.test_green
- if options.test_blue:
- kwargs["blue"] = options.test_blue
- if options.test_alpha:
- kwargs["alpha"] = options.test_alpha
- if options.greyscale:
- if options.test_red or options.test_green or options.test_blue:
- raise ValueError("cannot specify colours (R, G, B) when greyscale image (black channel, K) is specified")
- kwargs["red"] = options.test_black
- kwargs["green"] = None
- kwargs["blue"] = None
- options.alpha = bool(options.test_alpha)
- if not args:
- pixels = test_rgba(size, options.bitdepth, **kwargs)
- else:
- size,pixels,meta = pngsuite_image(args[0])
- for k in ['bitdepth', 'alpha', 'greyscale']:
- setattr(options, k, meta[k])
-
- writer = Writer(size, size,
- bitdepth=options.bitdepth,
- transparent=options.transparent,
- background=options.background,
- gamma=options.gamma,
- greyscale=options.greyscale,
- alpha=options.alpha,
- compression=options.compression,
- interlace=options.interlace)
- writer.write_array(sys.stdout, pixels)
-
-def read_pam_header(infile):
- """
- Read (the rest of a) PAM header. `infile` should be positioned
- immediately after the initial 'P7' line (at the beginning of the
- second line). Returns are as for `read_pnm_header`.
- """
-
- # Unlike PBM, PGM, and PPM, we can read the header a line at a time.
- header = dict()
- while True:
- l = infile.readline().strip()
- if l == strtobytes('ENDHDR'):
- break
- if not l:
- raise EOFError('PAM ended prematurely')
- if l[0] == strtobytes('#'):
- continue
- l = l.split(None, 1)
- if l[0] not in header:
- header[l[0]] = l[1]
- else:
- header[l[0]] += strtobytes(' ') + l[1]
-
- required = ['WIDTH', 'HEIGHT', 'DEPTH', 'MAXVAL']
- required = [strtobytes(x) for x in required]
- WIDTH,HEIGHT,DEPTH,MAXVAL = required
- present = [x for x in required if x in header]
- if len(present) != len(required):
- raise Error('PAM file must specify WIDTH, HEIGHT, DEPTH, and MAXVAL')
- width = int(header[WIDTH])
- height = int(header[HEIGHT])
- depth = int(header[DEPTH])
- maxval = int(header[MAXVAL])
- if (width <= 0 or
- height <= 0 or
- depth <= 0 or
- maxval <= 0):
- raise Error(
- 'WIDTH, HEIGHT, DEPTH, MAXVAL must all be positive integers')
- return 'P7', width, height, depth, maxval
-
-def read_pnm_header(infile, supported=('P5','P6')):
- """
- Read a PNM header, returning (format,width,height,depth,maxval).
- `width` and `height` are in pixels. `depth` is the number of
- channels in the image; for PBM and PGM it is synthesized as 1, for
- PPM as 3; for PAM images it is read from the header. `maxval` is
- synthesized (as 1) for PBM images.
- """
-
- # Generally, see http://netpbm.sourceforge.net/doc/ppm.html
- # and http://netpbm.sourceforge.net/doc/pam.html
-
- supported = [strtobytes(x) for x in supported]
-
- # Technically 'P7' must be followed by a newline, so by using
- # rstrip() we are being liberal in what we accept. I think this
- # is acceptable.
- type = infile.read(3).rstrip()
- if type not in supported:
- raise NotImplementedError('file format %s not supported' % type)
- if type == strtobytes('P7'):
- # PAM header parsing is completely different.
- return read_pam_header(infile)
- # Expected number of tokens in header (3 for P4, 4 for P6)
- expected = 4
- pbm = ('P1', 'P4')
- if type in pbm:
- expected = 3
- header = [type]
-
- # We have to read the rest of the header byte by byte because the
- # final whitespace character (immediately following the MAXVAL in
- # the case of P6) may not be a newline. Of course all PNM files in
- # the wild use a newline at this point, so it's tempting to use
- # readline; but it would be wrong.
- def getc():
- c = infile.read(1)
- if not c:
- raise Error('premature EOF reading PNM header')
- return c
-
- c = getc()
- while True:
- # Skip whitespace that precedes a token.
- while c.isspace():
- c = getc()
- # Skip comments.
- while c == '#':
- while c not in '\n\r':
- c = getc()
- if not c.isdigit():
- raise Error('unexpected character %s found in header' % c)
- # According to the specification it is legal to have comments
- # that appear in the middle of a token.
- # This is bonkers; I've never seen it; and it's a bit awkward to
- # code good lexers in Python (no goto). So we break on such
- # cases.
- token = strtobytes('')
- while c.isdigit():
- token += c
- c = getc()
- # Slight hack. All "tokens" are decimal integers, so convert
- # them here.
- header.append(int(token))
- if len(header) == expected:
- break
- # Skip comments (again)
- while c == '#':
- while c not in '\n\r':
- c = getc()
- if not c.isspace():
- raise Error('expected header to end with whitespace, not %s' % c)
-
- if type in pbm:
- # synthesize a MAXVAL
- header.append(1)
- depth = (1,3)[type == strtobytes('P6')]
- return header[0], header[1], header[2], depth, header[3]
-
-def write_pnm(file, width, height, pixels, meta):
- """Write a Netpbm PNM/PAM file."""
-
- bitdepth = meta['bitdepth']
- maxval = 2**bitdepth - 1
- # Rudely, the number of image planes can be used to determine
- # whether we are L (PGM), LA (PAM), RGB (PPM), or RGBA (PAM).
- planes = meta['planes']
- # Can be an assert as long as we assume that pixels and meta came
- # from a PNG file.
- assert planes in (1,2,3,4)
- if planes in (1,3):
- if 1 == planes:
- # PGM
- # Could generate PBM if maxval is 1, but we don't (for one
- # thing, we'd have to convert the data, not just blat it
- # out).
- fmt = 'P5'
- else:
- # PPM
- fmt = 'P6'
- file.write('%s %d %d %d\n' % (fmt, width, height, maxval))
- if planes in (2,4):
- # PAM
- # See http://netpbm.sourceforge.net/doc/pam.html
- if 2 == planes:
- tupltype = 'GRAYSCALE_ALPHA'
- else:
- tupltype = 'RGB_ALPHA'
- file.write('P7\nWIDTH %d\nHEIGHT %d\nDEPTH %d\nMAXVAL %d\n'
- 'TUPLTYPE %s\nENDHDR\n' %
- (width, height, planes, maxval, tupltype))
- # Values per row
- vpr = planes * width
- # struct format
- fmt = '>%d' % vpr
- if maxval > 0xff:
- fmt = fmt + 'H'
- else:
- fmt = fmt + 'B'
- for row in pixels:
- file.write(struct.pack(fmt, *row))
- file.flush()
-
-def color_triple(color):
- """
- Convert a command line colour value to a RGB triple of integers.
- FIXME: Somewhere we need support for greyscale backgrounds etc.
- """
- if color.startswith('#') and len(color) == 4:
- return (int(color[1], 16),
- int(color[2], 16),
- int(color[3], 16))
- if color.startswith('#') and len(color) == 7:
- return (int(color[1:3], 16),
- int(color[3:5], 16),
- int(color[5:7], 16))
- elif color.startswith('#') and len(color) == 13:
- return (int(color[1:5], 16),
- int(color[5:9], 16),
- int(color[9:13], 16))
-
-
-def _main(argv):
- """
- Run the PNG encoder with options from the command line.
- """
-
- # Parse command line arguments
- from optparse import OptionParser
- import re
- version = '%prog ' + re.sub(r'( ?\$|URL: |Rev:)', '', __version__)
- parser = OptionParser(version=version)
- parser.set_usage("%prog [options] [imagefile]")
- parser.add_option('-r', '--read-png', default=False,
- action='store_true',
- help='Read PNG, write PNM')
- parser.add_option("-i", "--interlace",
- default=False, action="store_true",
- help="create an interlaced PNG file (Adam7)")
- parser.add_option("-t", "--transparent",
- action="store", type="string", metavar="color",
- help="mark the specified colour (#RRGGBB) as transparent")
- parser.add_option("-b", "--background",
- action="store", type="string", metavar="color",
- help="save the specified background colour")
- parser.add_option("-a", "--alpha",
- action="store", type="string", metavar="pgmfile",
- help="alpha channel transparency (RGBA)")
- parser.add_option("-g", "--gamma",
- action="store", type="float", metavar="value",
- help="save the specified gamma value")
- parser.add_option("-c", "--compression",
- action="store", type="int", metavar="level",
- help="zlib compression level (0-9)")
- parser.add_option("-T", "--test",
- default=False, action="store_true",
- help="create a test image (a named PngSuite image if an argument is supplied)")
- parser.add_option('-L', '--list',
- default=False, action='store_true',
- help="print list of named test images")
- parser.add_option("-R", "--test-red",
- action="store", type="string", metavar="pattern",
- help="test pattern for the red image layer")
- parser.add_option("-G", "--test-green",
- action="store", type="string", metavar="pattern",
- help="test pattern for the green image layer")
- parser.add_option("-B", "--test-blue",
- action="store", type="string", metavar="pattern",
- help="test pattern for the blue image layer")
- parser.add_option("-A", "--test-alpha",
- action="store", type="string", metavar="pattern",
- help="test pattern for the alpha image layer")
- parser.add_option("-K", "--test-black",
- action="store", type="string", metavar="pattern",
- help="test pattern for greyscale image")
- parser.add_option("-d", "--test-depth",
- default=8, action="store", type="int",
- metavar='NBITS',
- help="create test PNGs that are NBITS bits per channel")
- parser.add_option("-S", "--test-size",
- action="store", type="int", metavar="size",
- help="width and height of the test image")
- (options, args) = parser.parse_args(args=argv[1:])
-
- # Convert options
- if options.transparent is not None:
- options.transparent = color_triple(options.transparent)
- if options.background is not None:
- options.background = color_triple(options.background)
-
- if options.list:
- names = list(_pngsuite)
- names.sort()
- for name in names:
- print name
- return
-
- # Run regression tests
- if options.test:
- return test_suite(options, args)
-
- # Prepare input and output files
- if len(args) == 0:
- infilename = '-'
- infile = sys.stdin
- elif len(args) == 1:
- infilename = args[0]
- infile = open(infilename, 'rb')
- else:
- parser.error("more than one input file")
- outfile = sys.stdout
-
- if options.read_png:
- # Encode PNG to PPM
- png = Reader(file=infile)
- width,height,pixels,meta = png.asDirect()
- write_pnm(outfile, width, height, pixels, meta)
- else:
- # Encode PNM to PNG
- format, width, height, depth, maxval = \
- read_pnm_header(infile, ('P5','P6','P7'))
- # When it comes to the variety of input formats, we do something
- # rather rude. Observe that L, LA, RGB, RGBA are the 4 colour
- # types supported by PNG and that they correspond to 1, 2, 3, 4
- # channels respectively. So we use the number of channels in
- # the source image to determine which one we have. We do not
- # care about TUPLTYPE.
- greyscale = depth <= 2
- pamalpha = depth in (2,4)
- supported = map(lambda x: 2**x-1, range(1,17))
- try:
- mi = supported.index(maxval)
- except ValueError:
- raise NotImplementedError(
- 'your maxval (%s) not in supported list %s' %
- (maxval, str(supported)))
- bitdepth = mi+1
- writer = Writer(width, height,
- greyscale=greyscale,
- bitdepth=bitdepth,
- interlace=options.interlace,
- transparent=options.transparent,
- background=options.background,
- alpha=bool(pamalpha or options.alpha),
- gamma=options.gamma,
- compression=options.compression)
- if options.alpha:
- pgmfile = open(options.alpha, 'rb')
- format, awidth, aheight, adepth, amaxval = \
- read_pnm_header(pgmfile, 'P5')
- if amaxval != '255':
- raise NotImplementedError(
- 'maxval %s not supported for alpha channel' % amaxval)
- if (awidth, aheight) != (width, height):
- raise ValueError("alpha channel image size mismatch"
- " (%s has %sx%s but %s has %sx%s)"
- % (infilename, width, height,
- options.alpha, awidth, aheight))
- writer.convert_ppm_and_pgm(infile, pgmfile, outfile)
- else:
- writer.convert_pnm(infile, outfile)
-
-
-if __name__ == '__main__':
- try:
- _main(sys.argv)
- except Error, e:
- print >>sys.stderr, e