Web   ·   Wiki   ·   Activities   ·   Blog   ·   Lists   ·   Chat   ·   Meeting   ·   Bugs   ·   Git   ·   Translate   ·   Archive   ·   People   ·   Donate
summaryrefslogtreecommitdiffstats
path: root/boardgen.py
blob: 1d3aaf6d489abdbbe883a790edbb2b3799274d96 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#!/usr/bin/env python
#
# Copyright (C) 2007, Joseph C. Lee
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA

import math
import random

import board

def generate_board(seed=0,
                   fragmentation=1,
                   fill=0.5,
                   max_colors=5,
                   max_size=(30,20)):
    """Generates a new board of the given properties using the given random
       seed as a starting point."""
    r = random.Random(seed)
    piece_sizes = _get_piece_sizes(r, fragmentation, fill, max_size)
    b = board.Board()
    for piece_size in piece_sizes:
        b = _try_add_piece(b, r, piece_size, max_colors, max_size)
    return b

def _try_add_piece(b, r, piece_size, max_colors, max_size):
    # Tries to add a piece of the given size to the board.  Returns the
    # modified board on success or the original board on failure.
    b2 = b.clone()
    change = _get_starting_change(b2, r, max_colors, max_size)
    if change is None:
        # If there are no valid starting points, return the original board.
        return b
    _make_change(b2, change)
    total_added_cells = 1
    while total_added_cells < piece_size:
        added_cells = _try_add_cells(b2, r, max_colors, max_size)
        if added_cells > 0:
            total_added_cells += added_cells
        else:
            # If we have added a valid piece, return the modified board;
            # otherwise return the original board.
            if total_added_cells >= 3:
                break
            else:
                #print "Aborted piece add."
                return b
    _color_piece_random(b2, r, max_colors)
    return b2

def _get_starting_change(b, r, max_colors, max_size):
    # Gets a valid initial change that adds a one-cell colorable piece to the
    # board, returning None if no such starting change exists.
    changes = _enumerate_one_cell_changes(b, max_size)
    while len(changes) > 0:
        change = r.choice(changes)
        changes.remove(change)
        if _change_is_colorable(b, change, max_colors):
            return change
    return None

def _enumerate_one_cell_changes(b, max_size):
    # Returns a list of all possible one-cell changes.
    (max_width, max_height) = max_size
    changes = []
    width = b.width
    if width < max_width and max_height >= 1:
        for i in range(width + 1):
            changes.append(_InsertColumnChange(i, 1))
    for i in range(width):
        col_height = b.get_column_height(i)
        if col_height < max_height:
            for j in range(col_height + 1):
                changes.append(_InsertCellChange(i, j))
    return changes

def _try_add_cells(b, r, max_colors, max_size):
    # Tries to add a cell or cells to the new piece on the board in a way that
    # ensures the resulting board is within the given board size and is
    # colorable with the given colors.  Returns the number of cells added
    # (zero, if no cell could be added).
    (cell_h_changes, cell_v_changes) = _get_cell_changes(b, max_size)
    col_changes = _get_col_changes(b, max_size)
    while (len(cell_h_changes) > 0
           or len(cell_v_changes) > 0
           or len(col_changes) > 0):
        change = _remove_change(r, cell_h_changes, cell_v_changes, col_changes)
        if _change_is_colorable(b, change, max_colors):
            _make_change(b, change)
            #print
            #print change
            #print b
            if isinstance(change, _InsertCellChange):
                return 1
            else:
                return change.height
    return 0

def _get_cell_changes(b, max_size):
    # Returns a list of all possible standard cell insertions.
    (max_width, max_height) = max_size
    h_changes = []
    v_changes = []
    width = b.width
    for i in range(width):
        col_height = b.get_column_height(i)
        if col_height < max_height:
            for j in range(col_height + 1):
                if b.get_value(i, j) != -1:
                    if (b.get_value(i + 1, j) == -1 or
                        b.get_value(i - 1, j) == -1):
                        h_changes.append(_InsertCellChange(i, j))
                    elif (b.get_value(i, j - 1) == -1 or
                          b.get_value(i, j + 1) == -1):
                        v_changes.append(_InsertCellChange(i, j))
    return h_changes, v_changes

def _get_col_changes(b, max_size):
    # Returns a list of all possible column insertions.
    (max_width, max_height) = max_size
    width = b.width
    if width == max_width or max_height < 1:
        return []
    highest_new_pieces = []
    for i in range(width):
        col_height = b.get_column_height(i)
        highest_new_piece = 0
        for j in range(col_height):
            value = b.get_value(i, j)
            if value == -1:
                highest_new_piece = j + 1
        highest_new_pieces.append(highest_new_piece)
    changes = []
    for (i, (height1, height2)) in enumerate(zip(highest_new_pieces + [0],
                                                 [0] + highest_new_pieces)):
        height = max(height1, height2)
        if height > 0:
            changes.append(_InsertColumnChange(i, height))
    return changes

def _remove_change(r, cell_h_changes, cell_v_changes, col_changes):
    # Removes a change from cell changes or col changes (less likely) and
    # returns it.
    h_weight = len(cell_h_changes) * 10
    v_weight = len(cell_v_changes) * 5 
    col_weight = len(col_changes) * 1
    value = r.randint(0, h_weight + v_weight + col_weight - 1)
    if value < h_weight:
        return _pick(r, cell_h_changes)
    elif value < h_weight + v_weight:
        return _pick(r, cell_v_changes)
    else:
        return _pick(r, col_changes)

def _pick(r, items):
    index = r.randint(0, len(items) - 1)
    return items.pop(index)

def _change_is_colorable(b, change, max_colors):
    # Returns True if the board is still colorable after the given change is
    # made, False otherwise.
    b2 = b.clone()
    _make_change(b2, change)
    colors = _get_new_piece_colors(b2, max_colors)
    return len(colors) > 0

def _make_change(b, change):
    # Makes the given change to the board (side-affects board parameter).
    if isinstance(change, _InsertColumnChange):
        b.insert_columns(change.col, 1)
        for i in range(change.height):
            b.set_value(change.col, i, -1)
    elif isinstance(change, _InsertCellChange):
        new_indexes = []
        data = []
        col_height = b.get_column_height(change.col)
        assert change.height <= col_height
        for i in range(col_height):
            value = b.get_value(change.col, i)
            if i == change.height:
                data.append(-1)
            if value == -1:
                new_indexes.append(i)
            else:
                data.append(value)
        if change.height == col_height:
            data.append(-1)
        for index in new_indexes:
            data.insert(index, -1)
        for (i, value) in enumerate(data):
            b.set_value(change.col, i, value)
    else:
        assert False

def _color_piece_random(b, r, max_colors):
    # Colors in the new piece on the board with a random color using the given
    # random number generator and number of colors.
    colors = _get_new_piece_colors(b, max_colors)
    color = r.choice(list(colors))
    _color_piece(b, color)

def _color_piece(b, color):
    # Colors in the new piece on the board with the given color.
    coords = _get_new_piece_coords(b)
    for (i, j) in coords:
        b.set_value(i, j, color)

def _get_new_piece_colors(b, max_colors):
    # Returns the set of possible colors for the new piece.
    colors = set(range(1, max_colors + 1))
    coords = _get_new_piece_coords(b)
    for (i, j) in coords:
        for (x_ofs, y_ofs) in ((-1, 0), (1, 0), (0, -1), (0, 1)):
            colors.discard(b.get_value(i + x_ofs, j + y_ofs))
    return colors

def _get_new_piece_coords(b):
    # Returns a list of new piece coordinates.
    coords = []
    for i in range(b.width):
        col_height = b.get_column_height(i)
        for j in range(col_height):
            if b.get_value(i, j) == -1:
                coords.append((i, j))
    return coords

def _get_piece_sizes(r, fragmentation, fill, max_size):
    # Returns a list containing the new piece sizes for the board using the
    # given random number generator, fragmentation, fill, and board size.
    max_area = max_size[0] * max_size[1] * fill
    total_area = 0
    piece_sizes = []
    while total_area < max_area:
        piece_size = _get_piece_size(r, fragmentation, max_area)
        total_area += piece_size
        piece_sizes.append(piece_size)
    #print piece_sizes
    return piece_sizes

def _get_piece_size(r, fragmentation, max_area):
    # Returns a random piece size using the given random number generator,
    # fragmentation, and board size.
    upper_bound = math.ceil(math.sqrt(max_area))
    value = r.random()
    exp = fragmentation
    piece_size = int(max(3, math.pow(value, exp) * upper_bound))
    return piece_size

class _InsertColumnChange(object):
    # Represents the action of inserting a column into the board at column
    # "col" containing "height" cells.
    def __init__(self, col, height):
        self.col = col
        self.height = height

    def __eq__(self, other):
        return (isinstance(other, _InsertColumnChange)
                and self.col == other.col
                and self.height == other.height)

    def __ne__(self, other):
        return not self.__eq__(other)

    def __repr__(self):
        return "_InsertColumnChange(%d, %d)" % (self.col, self.height)

class _InsertCellChange(object):
    # Represents the action of inserting a cell into the board in column
    # "col" at height "height".
    def __init__(self, col, height):
        self.col = col
        self.height = height

    def __eq__(self, other):
        return (isinstance(other, _InsertCellChange)
                and self.col == other.col
                and self.height == other.height)

    def __ne__(self, other):
        return not self.__eq__(other)

    def __repr__(self):
        return "_InsertCellChange(%d, %d)" % (self.col, self.height)

def main():
    b = generate_board(seed=1,
                       fragmentation=1,
                       max_colors=5,
                       max_size=(20,10))
    print repr(b)

if __name__ == '__main__':
    #import cProfile
    #cProfile.run('main()', 'genprof')
    #import pstats
    #p = pstats.Stats('genprof')
    #p.strip_dirs().sort_stats(-1).print_stats()
    main()